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ABSTRACT

This paper examines Lie algebras with particular focus on finite-dimensional Lie algebras
over C, building up to the classification of semisimple complex Lie algebras. We draw heavily
from Erdmann and Wildon’s book Introduction to Lie Algebras [3]. After some brief historical
background, we introduce properties like solvability and semisimplicity, define the classical
matrix Lie algebras, then give a whirldwind tour of the classification by root systems and
Dynkin diagrams.The appendix includes solutions to many exercises from [3].

1 Historical notes

In the 1862-1863, Sophus Lie (1842-1899) attended a series of lectures by Sylow on Galois
theory while studying at the University of Oslo [6]. This may have been the kernel of Lie’s
great inspiration: to look at differential equations in the way that Galois looked at polynomial
equations, that is, by considering symmetry groups. First known as “continuous groups” or
“Infinitesimal groups,” these symmetry groups are now known as Lie groups [2]. In his 1874
paper Zur Theorie des Integrabilitetsfaktors, Lie demonstrated the validity of his intuition
with a theorem relating the stability group of a differential equation to its solvability via
integration.

Wilhelm Killing (1847-1923) began studying the closely related structures now known as
Lie algebras from a different starting point than Lie. While Lie began with differential equa-
tions, Killing had a geometrical interest in “the problem of classifying infinitesimal motions
of a rigid body in any type of space” [2]. In the second of a series of four papers published
in 1888-1890 called Die Zusammensetzung der stetigen, endlichen Transformationsgruppen,
Killing gave a full classification of simple complex Lie algebras. In this paper, he introduced
what are now known as Cartan subalgebras, Cartan matrices, and root systems [2].

In his doctoral thesis, Elie Cartan (1869-1951) extended Killing’s work on the classifica-
tion of simple complex Lie algebras. Depending on whom one believes, Cartan either fixed
a few minor gaps or did a major repair job. Coleman [2] says that “the first two thirds” of
Cartan’s thesis is “essentially a commentary” on Killing’s paper, while Hawkins [4] describes
Killing’s paper as “imperfect work” in a “tentative form,” and refers to “Cartan’s successful
and brilliant reworking of Killing’s theory.”

Regardless, it is certain that Killing’s paper lacked some amount of details and rigor,
and Cartan’s thesis gave a fuller presentation of the classification. In his thesis, Cartan
introduced what is now called the Killing form, as well as his “criterion for solvability” and
“criterion for semisimplicity.” Cartan went on to do more work in the classification of Lie
algebras, including his classification of simple real Lie algebras.



2 Properties of Lie Algebras

We assume that the reader is familiar with the linear algebra concepts of vector spaces, linear
maps, and representing linear maps by matrices.

Definition 2.1. A Lie algebra is a vector space L over a field F' with a bilinear bracket
,] : L x L — L that satisfies [x,z] = 0 and [z, [y, 2]] + [y, [z, z]] + [2, [y, z]] = O for all
x,y,z € L.

Specifically, the bilinear property of the bracket is equivalent to the following:

[Z aixi, Z bjyj = Z aibj[xz’, yj]

@ ]

Proposition 2.2. Let L be a Lie algebra. Then [x,y] = —[y, x| for z,y € L.
Proof. See [3] page 1. O

This paper is mostly concerned with finite-dimensional Lie algebras over the fields R and
C, so frequently finite-dimensionality is taken as an unstated assumption. Working in finite
dimensions simplifies things because it allows us to always represent a linear map by a matrix.
The field can be left unspecified for many results, but many of the later theorems restrict to
the case where the field is C.

Lie algebras have many analogous concepts to groups and rings, including subalgebras
(corresponding to subgroups), ideals, being abelian, center (denoted Z (L)), homomorphisms,
isomorphisms (denoted =), and quotient algebras. For definitions of these, see chapters 1
and 2 of [3]. As just one example of the analogy between Lie algebras and rings, take the
following proposition.

Proposition 2.3 (Exercise 1.6'). Let Ly, Lo be Lie algebras and let ¢ : Ly — Ly be a Lie
algebra homomorphism. Then ker ¢ is an ideal of Ly and im ¢ is a subalgebra of Lo.

Proof. First we show that ker ¢ is an ideal of Ly. Let x € L,y € ker ¢. Then

o([z,9]) = [¢(x), ¢(y)] = [¢(2),0] = 0 = [z,y] € ker §

Now we show that im ¢ is a subalgebra of Ly. Let z,y € im¢. Then there exist z/,y' € Ly
such that ¢(z') = = and ¢(y') = y. Then

[ ] € Ly = [x,y] = [6(2"), o(y/)] = ¢([2",¢/]) € im ¢
O

The above proposition is exactly parallel to one about rings: the kernel of a ring homomor-
phism is an ideal of the domain, and the image is a subring of the codomain.

LAll exercise numbers refer to Erdmann and Wildon, Introduction to Lie Algebras.



2.1 Solvable and Nilpotent

Because of Proposition 2.3 above, we know that Lie algebra isomorphisms must preserve
properties related to ideals, so constructions involving ideals are central to classifying Lie
algebras.

Definition 2.4. Let L be a Lie algebra with ideals I, J. We define the bracket of I,J by
[I,J] =span{[z,y] :x € [,y € J}

Proposition 2.5. Let L be a Lie algebra with ideals I,J. Then [I,J] is an ideal of L.

Proof. See [3] page 12. O

In particular, we use the symbol L’ or L) to refer to [L, L], which is called the derived
algebra of L. We can also consider the derived algebra of L', which is an ideal of L', and
so on. We refer to the kth derived algebra by L*), so we have the derived series of ideals
of L:

LoLW oL@ 518 5

Definition 2.6. A Lie algebra L is solvable if L*) =0 for some k > 1.

Note that the symbol “0” here refers not to the additive identity of the vector space L, but
to the singleton set containing that element. This common abuse of notation is unfortunate,
since “0” is also used for the zero vector in L and the zero element of the underlying field F'.

The adjective “solvable” is applied to both Lie algebras and to groups, and the parallel
usage is not coincidental. The next two lemmas indicate how a requirement analogous to
the definition of solvable group makes L a solvable Lie algebra.

Lemma 2.7 (Lemma 4.1 of [3]). Suppose that L is an ideal of L. Then L/I is abelian if
and only if I contains the derived algebra L.

Proof. (Proof quoted from [3] page 28.) The algebra L/I is abelian if and only if for all
x,y € L we have
e+ TLy+1I=[z,y| +1=1

or, equivalently, for all z,y € L we have [z,y] € I. Since I is a subspace of L, this holds if
and only if the space spanned by the bracktes [z, y| is contained in I; that is, L' C I. O]
Lemma 2.8 (Lemma 4.3 of [3]). If L is a Lie algebra with ideals

L=Lp2hL2...26,121,=0
such that Iy_1 /I is abelian for 1 <1 < m, then L is solvable.

Proof. (Proof quoted from [3] pages 29-29.) We shall show that L*) is contained in I}, for k
between 1 and m. Putting k = m will then give L™ = 0.

Since L/I; is abelian, we have from Lemma 4.1 that L' C I;. For the inductive step, we
suppose that L*~Y C I,_;, where k > 2. The Lie algebra I;_,/I; is abelian. Therefore by
Lemma 4.1, this time applied to the Lie algebra I;_;, we have [[;_1, Iz_1] C I. But L&*=Y
is contained in [ _; by our inductive hypothesis, so we deduce that

LW = [L*D LED] C 1y, Iy
and hence L® C T, -



Now we introduce a important particular ideal of every Lie algebra, the radical.

Definition 2.9. The radical of a Lie algebra L, denoted rad L, is the unique maximal
solvable ideal of L, that is, if I C L is a solvable ideal, then I C rad L.

One must actually prove that rad L is well-defined; this is shown in Corollary 4.5 of [3].

In addition to the derived series of ideals L), there is another important series of ideals
of L, called the central lower series, denoted by L*. In the case of the derived series, we
had

LK) — [L(kfl),L(kfl)]

The central lower series is defined by the similar recursive formula
Lk = [L, LF]
and one gets a similar sequence of containments:
LOL'DL*D>L* D ...

Definition 2.10. A Lie algebra L is nilpotent if L* = 0 for some k > 1.

As one would expect, a subalgebra of a solvable or nilpotent Lie algebra inherits being
solvable or nilpotent, respectively.

Proposition 2.11 (Lemma 4.4(a) of [3]). If L is a solvable Lie algebra, then every subalgebra
of L is solvable.

Proof. Let L be solvable with subalgebra A. Then L = 0 for some m. Notice that
A®) C L® for all k, so A™ C L(m) = 0, thus A™ = 0. 0

Proposition 2.12 (Lemma 4.9(a) of [3]). If L is a nilpotent Lie algebra, then every subal-
gebra of L is nilpotent.

Proof. Let L be nilpotent with subalgebra A. Then L™ = 0 for some m and A* C L* for all
k, so A¥ C L¥ =0, hence A* = 0. O

2.2 Isomorphism Theorems and Direct Sums

We assume the reader is familiar with definitions of subspaces, cosets, and quotient spaces of
vector spaces. Once again, Lie algebras have analogous structures - one can consider cosets
of an ideal and impose a bracket structure on them to make the space of cosets a Lie algebra
(see [3] section 2.2). Lie algebras have analogous isomorphism theorems to vector spaces and
groups.

Theorem 2.13 (Isomorphism theorems).

1. Let ¢ : Ly — Lo be a Lie algebra homomorphism. Then Lq/ker ¢ = im ¢.
2. Let I,.J be ideals of a Lie algebra. Then (I +J)/(J =1/(INJ)
3. Let I1,J be ideals of a Lie algebra with I C J. Then J/I is an ideal of L/I and

(L/D)/(J/T) = L/ J.



Another construction inherited from vector spaces is that of direct sums.

Definition 2.14. Let Ly, Ly be Lie algebras. We define L1 @ Ly to be the vector space direct
sum of Ly, Ly as vector spaces, and give it the bracket

(71, 22), (Y1, y2)] = ([21, 9], [T2, ¥2])

For a proof that this is bracket satisfies the necessary properties, see the solution to Exercise
2.6 in the appendix. As one would expect, the projections

Li® Ly, — Ly Li® Ly — Ly
(ZE17 0) — I (0, IQ) — To

are surjective Lie algebra homomorphisms, so L, & Ly contains subalgebras isomorphic to
Ly and Ly. (For more on this, see solution to Exercise 2.7 in the appendix.)

2.3 Simple and Semisimple

Definition 2.15. A Lie algebra is simple if it has no nonzero proper ideals and it is not
abelian.

Note that if dim L > 2 and L has no nonzero proper ideals, then it is simple.
Definition 2.16. A Lie algebra is semisimple if has no nonzero solvable ideals.

There are many other equivalent characterizations of semisimple Lie algebras, as illustrated
by the following proposition.

Proposition 2.17. Let L be a Lie algebra. The following are equivalent:

1. L is semisimple.

2. rad L = 0.

3. L has no nonzero abelian ideals.

4. L can be written as a direct sum of simple Lie algebras.

Proof. The equivalence of (1) and (2) is immediate from the definitions. If L is semisimple,
then the only solvable ideal is the zero ideal, so rad L = 0. If rad L = 0, then there are no
bigger solvable ideals, so L is semisimple.

The equivalence of (2) and (3) is Exercise 4.6. We begin by showing that (2) implies (3).
Let L be a semisimple Lie algebra. Let I be a nonzero ideal of L. Suppose [ is abelian.
Then [I,I] = 0, so [ is solvable. However, this contradicts the fact that L has no nonzero
solvable ideals, so I must not be abelian. Thus L has no nonzero abelian ideals.

Now we show that (3) implies (2). Let L be a Lie algebra with no nonzero abelian ideals.
Suppose L has a nonzero solvable ideal 1. Then I*) = 0 for some k. Let m be the minimum
over such k, so that 1™ = 0 but 10"~V % 0. Then [["V [m=D] = [(™) = ( 50 [(m—1)
is a nonzero abelian ideal of L, which is a contradiction. Thus we conclude that L has no
solvable ideals. Thus we have shown that (1) is equivalent to (2).

The equivalence of (1) and (4) is proven in Theorem 9.11 of [3]. We defer the proof until
later (Theorem 5.5), since it requires machinery that has not yet been defined. O
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3 Matrix Lie Algebras

Most important examples of Lie algebras are matrix algebras, and as one eventually discovers
in the classification, every finite-dimensional semisimple complex Lie algebra is isomorphic
to a matrix algebra, except for five exceptions. For all matrix Lie algebras, the bracket is
given by the matrix commutator, [z,y| = zy —yx. One can quickly confirm that this bracket
always satisfies [x,z] = 0 and the Jacobi identity. Before getting into matrix algebras, we
need the notation e;;.

Definition 3.1. The matriz e;; is the matriz with a one in the ijth place and zero elsewhere.
Lemma 3.2. [eij, le] = 0jk€il — 5il€kj
Proof. See appendix, Proposition 6.10. O

Definition 3.3. gl(n, F') is the set of n x n matrices with entries in F.

It has dimension n?, since {e;; : 1 < 4,7 < n} is a basis. gl(n, F') is closely related to the

following, as indicated by the parallel notation.

Definition 3.4. Let V' be a vector space over a field F. Then gl(V') is the set of linear maps
fromV to V.

For any vector space V, gl(V) is a Lie algebra under the bracket [x,y] = z oy — y o x.
(For proof that this bracket satisfies the Jacobi identity, see solution to Exercise 1.3 in the
appendix.)

The parallel “gl” notation is justified by the fact that if V' is finite-dimensional, then
gl(V') is isomorphic to gl(n, F'). If one fixes a basis of V', then one can represent every map
x € gl(V) uniquely by a matrix in gl(n, F'), and every matrix in gl(n, F') gives a linear map
in gl(V'). This bijection preserves the bracket since composition of linear maps corresponds
to multiplication of matrix representations. Note that in this correspondence, to compute
the “action” of a matrix as a linear map on a vector, one multiplies the matrix by the vector,
with the matrix as the left multiplicand.

Because of this isomorphism, people often refer to the elements of gl(V') as matrices, and
the same terminology is used to refer to matrices and linear maps. Here’s a table summarizing
the equivalence. Let V' be any finite-dimensional vector space over F' (isomorphic to F™™),
veV,and X € F.

Linear maps Matrices
ambient space gl(V) gl(n, F)
binary operation composition multiplication
zero element zero map, v — 0 matrix of all zeros
identity element identity map, v — v identity matrix, diag(1,1,...)
nilpotent dn such that 2"(v) = 0,Vv dn such that " =0
eigenvectors v such that z(v) = v v such that xv = Av
eigenvalues A such that z(v) = v A such that zv = v
diagonalizable 3 basis of V' of eigenvectors | 3 basis of V' of eigenvectors
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3.1 The Adjoint Representation

Definition 3.5. Let L be a Lie algebra over a field F. A representation of L is a Lie
algebra homomorphism ¢ : L — gl(V') where V' is a vector space over F.

While technically the word “representation” refers to the map ¢, often this map is described
without being named, and instead the vector space V' is called a representation of L. Assum-
ing that V' is finite-dimensional, gl(V') is isomorphic to gl(n, F'), so a representation allows
one to work with the elements of L as if they were matrices, by considering their images
under ¢. This explains the use of the term “representation;” a representation allows one to
represent the elements of L as matrices.

The most important example of a representation is the adjoint representataion.

Definition 3.6. Let L be a Lie algebra. The adjoint representation of L is the map
ad : L — gl(L) where ad x is the map y — [x,y]. That is, ad z(y) = [z, y].

One can check that ad is a Lie algebra homomorphism (see [3] pages 4-5). If L is finite-
dimensional, the adjoint representation always allows one to represent L as a Lie subalgebra
of gl(n, F'). You may lose some information about the structure of L, though, since ad
is not necessarily one-to-one. (The word faithful is often used to refer to a one-to-one
representation.) However, even when ad is not faithful, it is always possible to find a faithful
representation as a matrix algebra, due to Ado’s Theorem.

Theorem 3.7 (Ado). Let L be a finite-dimensional Lie algebra. There exists a faithful
representation of L, ¢ : L — gl(V') where V is a finite-dimensional vector space.

Proof. See [9]. For more on why the result holds over arbitrary fields, see [8]. O

This theorem justifies focusing study of the subalgebras of gl(n, F'), since such an approach
is in fact the study of all finite-dimensional Lie algebras.

3.2 Matrices with Trace Zero
Definition 3.8. sl(n, F) is the set of n X n matrices with entries in F' and trace zero.

It has dimension n? — 1, since {e;; : i # j} U {es — €iy1441 : 1 <@ <n—1} is a basis. To
confirm that sl(n, F) is a Lie algebra, one needs to check that the bracket of two matrices
with trace zero also has trace zero. In fact, the bracket of any two matrices has trace zero,
as shown in the next proposition.

Proposition 3.9. Let x,y be matrices. Then tr[z,y] = 0.
Proof. Let x;; and y;; be the ijth entries of z, y respectively. Then

tr(zy) = > (y)i = Z Z%’jyﬂ = Z Z yiivi; = »_(yx)j; = tr(y)

i J

Hence
tefe,y] = tr(ay — ya) = tr(zy) — tr(yz) = 0



This establishes that sl(n, F') is closed under the bracket. It also establishes that the derived
algebra gl(n, F')" is contained in sl(n, F'). In fact, the derived algebra is not merely a subset
of sl(n, F'), but equal to it.

Proposition 3.10 (Exercise 2.10). The derived algebra of gl(n, F') is sl(n, F).
Proof. Using the above lemma, we compute:
e, e1j] = duieij = €;; fori# j
[€ii41s €it1i] = Oit1,i+1€ii — 0ii€it1,i41 = €5 — €ip1441 for 1 <i<m

Thus e;5, €;; — €;41,+1 € gl(n, F)’, so gl(n, )’ contains the basis described above for sl(n, F').
We already know that gl(n, F')’ C sl(n, F’), so now that we know gl(n, F')" is a subspace of
equal or greater dimension, gl(n, F')’ must be equal to sl(n, F'). ]

One particularly important instance of sl(n, F') is sl(n,C), since it appears in the final
classification of semisimple complex Lie algebras. It also has the significant property of being
simple.

Proposition 3.11 (Exercise 4.7). sl(n,C) is a simple Lie algebra for n > 2.

Proof. See Exercise 4.7 in appendix. n

3.3 Upper Triangular Matrices
We introduce two more matrix Lie algebras, and then examine several of their properties.
Definition 3.12. b(n, F') is the set of n X n upper triangular matrices with entries in F.

To check that b(n, F') is closed under the bracket, note that the product of upper triangular
matrices is upper triangular.

Definition 3.13. n(n, F) is the set of n x n strictly upper triangular matrices with entries
in F.

n(n, F') is also closed under the bracket, so b(n, F') and n(n, F') are subalgebras of gl(n, F').
Note that every strictly upper triangular matrix is nilpotent.

Proposition 3.14. b(n, F) = n(n, F).
Proposition 3.15. n(n, F') is nilpotent.
Proposition 3.16. b(n, F') is solvable. Additionally, if n > 2, then b(n, F') is not nilpotent.

For proofs of the above propositions, see Exercises 4.4 and 4.5 in the appendix. At first
glance, b(n, F') being solvable and n(n, F') being nilpotent seem like very narrow results, but
actually there is a sense in which b(n, F') is a model for many solvable Lie algebras, and
n(n, F') is a model for many nilpotent Lie algebras.



Proposition 3.17 (Exercise 5.4i). Let L be a Lie subalgebra of gl(V'). Suppose there is a
basis of V' such that every x € L is represented by a strictly upper triangular matriz. Then
L is isomorphic to a subalgebra of n(n, F).

Proposition 3.18 (Exercise 5.4ii). Let L be a Lie subalgebra of gl(V'). Suppose there is a
basis of V' such that every x € L 1is represented by an upper triangular matriz. Then L is
isomorphic to a subalgebra of b(n, F).

See appendix for proofs. Note that one can make the above into “if and only if” statements,
since the other direction is straightforward. (If L = b(n, F'), then that isomorphism gives a
representation of L in which every x is upper triangular, and likewise for n(n, F).)

These propositions say that b(n, F') and n(n, F') are not merely basic instances of solvable
and nilpotent Lie algebras; in a loose sense, they encapsulate much of the general structure
of solvable and nilpotent Lie algebras. The next two major results extend the above pair of
propositions and make this “loose sense” rigorous.

Theorem 3.19 (Engel’s Theorem). Let V' be a vector space, and let L be a Lie subalgebra of
gl(V') such that every element of L is a nilpotent linear transformation of V.. Then there is
a basis of V' in which every element of L is represented by a strictly upper triangular matriz.

Proof. See [3] pages 46-48. O

We already knew that if L can be represented as all strictly upper triangular matrices, then
L is nilpotent, because of Propositions 3.15 and 3.17. Engel’s Theorem says that if there is a
faithful representation of L in which the representation of each x € L is nilpotent, then there
is a faithful matrix representation of L in all x € L are strictly upper triangular. Engel’s
Theorem is frequently written in a slightly different form:

Theorem 3.20 (Engel’s Theorem). A Lie algebra L is nilotent if and only if for all x € L
the map ad x is nilpotent.

Proof. See [3] pages 48-49. O

Lie’s Theorem gives a similar characterization for upper triangular matrices, but requires
that the underlying field be C.

Theorem 3.21 (Lie’s Theorem). Let V' be a finite-dimensional vector space over C, and let
L be a solvable Lie subalgebra of gl(V'). Then there is a basis of V' in which every element
of L is represented by an upper triangular matriz.

Proof. See [3] pages 49-51. O

3.4 Classical Lie Algebras

We have already defined sl(n, F'); sl(n,C) is the same, just with the field being C. There
are two other families of classical Lie algebras that appear in the classification of semisimple
complex Lie algebras.



Definition 3.22. so(n,C) is the set of n X n orthogonal matrices with determinant one.
That 1is,
so(n,C) = {z € gl(n,C) : 2' = 27!, detx = 1}

In order to define sp(2n, C), let Q be the following 2n x 2n block matrix.

0 I,
°= (L %)
Definition 3.23. sp(2n,C) is the set of 2n X 2n matrices with entries in C that satisfy

2'Qx = Q. That 1s,
sp(2n,C) = {x € gl(2n,C) : 2'Qx = O}

Note that so(n,C) is a Lie subalgebra of sl(n,C) and sp(2n,C) is a subalgebra of sl(2n, C)
(see [3] page 33).
3.5 Exceptional Lie Algebras

The exceptional Lie algebras are known as eg, €g, €s, f1, and go. There’s not much else to say
about them here, except that they're finite-dimensional semisimple complex Lie algebras.
They’ll show up in the big classification of Dynkin diagrams later.

4 Modules

Even though we already have the language of representations to think of any finite-dimensional
Lie algebra as a matrix algebra, we introduce another set of notation for thinking of a Lie
algebra as a set of linear maps acting on some vector space V, the language of modules.

Definition 4.1. Let L be a Lie algebra over F. An L-module is a vector space V' over F
with a map

LxV =V
(r,v) —~>z-v

with the properties

(At -+ 1) -0 = Mz - 0) + ply - 0) (1)
- (A + pw) = Mz - v) + plx - w) (M2)
[zylv=2-(y-v) =y (z-v) (M3)

There is an exact correspondence between L-modules and representations of L. As men-
tioned before, one often doesn’t care about the name of the map in a representation of L, and
viewing it as a module allows one to ignore the map ¢. Here is a short table summarizing
the correspondence between L-modules and representations of L.

10



Representations Modules
main mapping ¢:L—gl(V) LxV =V (x,v)—z-v
image of one element o(z)(v) T-v
linearity in first entry ¢ is linear (M1)
linearity in second entry ¢(z) is linear Vo (M2)
preserves bracket ¢ is homomorphism (M3)

submodule/subrepresentation
homomorphism

r€LiweW — ¢(x)(w) e W
0(p(x)v) = ¥ (z)0(v)

reLweW —sz-welW
O(z-v)=x-0(v)

As shown on pages 55-56 of [3], one can make a representation into an L-module and one
can make an L-module into a representation.

Definition 4.2. Let V' be an L-module. A submodule of V is a subspace W such that for
x € LweW, we have x - w € W.

When first encountering submodules, one often sees the confusing interchangability of “sub-
module of V7 and “submodule of L.” Even though the phrase “submodule of L” implies a
subspace of L, it refers to the same thing, that is, subspaces of V.

Definition 4.3. Let V' be an L-module. V is irreducible if it is nonzero and has no nonzero
proper submodules.

There are, of course, many modules that are not irreducible. One would hope that we could
always decompose a module as a direct sum of irreducible submodules. While this is not
true for all Lie algebras, it is true for semisimple complex Lie algebras; this result is Weyl’s
Theorem.

Theorem 4.4 (Weyl’s Theorem). Let L be a complex semisimple Lie algebra. Every finite
dimensional L-module can be written as a direct sum of irreducible submodules.

Proof. See appendix B of [3]. ]

As with any algebraic structure, modules/representations have their own notion of homo-
morphism.

Definition 4.5. Let L be a Lie algebra and let V.W be L-modules. An L-module homo-
morphism is a linear map 0 -V — W with

O(z-v)=x-0(v)
forallveV,x e L.

Definition 4.6. Let L be a Lie algebra and let ¢ : L — gl(V'), ¢ : L — gl(W) be represen-
tations. A representation homomorphism is a linear map 0 : V. — W with

forallveV,x e L.
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Of course, the definitions for homomorphism are equivalent, but we have separated them into
two different definitions since the notation looks quite different. As usual, an isomorphism
(denoted =) is a bijective homomorphism.

Lemma 4.7 (Schur’s Lemma). Let L be a complex Lie algebra and let S be a finite-
dimensional irreducible L-module. A map 60 : S — S is an L-module homomorphism if
and only if 0 is a scalar multiple of the identity transformation, that is, if 6 = Alg for some

AeC.
Proof. See [3] page 62. O

4.1 Classification of sl(2,C) modules

Somewhat surprisingly, the irreducible sl(2,C) modules are completely determined by di-
mension. First we need to define the common basis e, f, h for sl(2,C).

S ) B (R B

Definition 4.8. V; is the vector space of homogenous polynomials of degree d in two variables
with complex coefficients.

The natural basis for Vj is {2, 2471y, ... y? 'z, y?}. It has dimension d+1. V; can be viewed

as an sl(2, C) module by defining

€T =T— f-m:ya_ hor=1r— —y—
x

dy
For details on how this is in fact a module, and that it is irreducible, see pages 67-70 of [3].

Theorem 4.9 (Theorem 8.5 of [3]). Let V' be a finite-dimensional irreducible sl(2, C) module.
Then V' is isomorphic to Vy for some d.

Proof. See [3] pages T1-73. O

5 Classification of Semisimple Complex Lie Algebras

We now look at the structures needed for the classification theorem of Killing and Cartan.

5.1 The Killing Form

As mentioned in the historical notes, the Killing form is somewhat improperly named, as it
was actually first introduced by Cartan. But someone (not Cartan) decided to call this map
the Killing form, and the name stuck.

Definition 5.1. Let L be a complex Lie algebra. The Killing form on L is the symmetric
bilinear form k : L x L — C defined by

k(z,y) = tr(adz o ad y)

12



Note that s is symmetric because tr(ab) = tr(ba) for matrices a,b. The values of the
Killing form allow one to deduce a lot about the structure of L, as seen in the following two
propositions.

Theorem 5.2 (Cartan’s First Criterion). A complex Lie algebra L is solvable if and only if
k(z,y) =0 forallz € Ly e L.

Proof. See [3] pages 80-81. ]

Theorem 5.3 (Cartan’s Second Criterion). A complex Lie algebra L is semisimple if and
only if the Killing form on L is non-degenerate.

Proof. See pages 82-83 of [3] O

We now have the required machinery to prove the equivalence of (1) and (4) asserted in
Proposition 2.17, that a Lie algebra is semisimple if and only if it can be written as a direct
sum of simple ideals. First we prove one more lemma.

Lemma 5.4 (Lemma 9.10 of [3]). If I is a non-trivial proper ideal in a complex semisimple
Lie algebra L, then L =1 @ I+. The ideal I is a semisimple Lie algebra in its own right.

Proof. (This proof quoted from [3], page 83.) As usual, let x denote the Killing form on I.
The restriction of x to I N I+ is identically 0, so by Cartan’s First Criterion, I NI+ = 0. It
now follows by dimension counting that L = I @& I+.

We shall show that I is semisimple using Cartan’s Second Criterion. Suppose that I has
a non-zero solvable ideal. By the “only if” direction of Cartan’s Second Criterion, the Killing
form on I is degenerate. We have seen that the Killing form on [ is given by restricting
the Killing form on L, so there exists a € I such that k(a,z) = 0 for all x € [. But as
a € I,k(a,y) =0 for all y € I+ as well. Since L = I @ I+, this shows that  is degenerate,
a contradiction. O]

Theorem 5.5 (Theorem 9.11 of [3]). Let L be a complex Lie algebra. Then L is semisimple
if and only if there are simple ideasl Ly, ... L, of L such that L =L, ® Lo ® ... ® L,.

Proof. (This proof quoted for [3], pages 83-84.) We begin with the “only if” direction,
working by induction on dim L. Let I be an ideal in L of the smallest possible non-zero
dimension. If I = L, we are done. Otherwise I is a proper simple ideal of L. (It cannot
be abelian as by hypothesis L has non non-zero abelian ideals.) By the preceding lemma,
L = I @ I+, where, as an ideal of L, I+ is a semisimple Lie algebra of smaller dimension
than L. So, by induction, I* is a direct sum of simple ideals,

It'=L,®...0L,

Each L; is also an ideal of L, as [I, L;] C I NI+ = 0, so putting L; = I we get the required
decomposition.

Now for the “if” direction. Suppose that L = L, @ ... ®,, where the L; are simple ideals.
Let I = rad L; our aim is to show that I = 0. For each ideal L;,[I,L; C I N L; is a solvable
ideal of L;. But the L; are simple, so

L) C, L& ... ®[,L]=0

13



This shows that I is contained in Z(L). But by Exercise 2.6(ii) (see appendix)
Z(L)=Z(L)@...® Z(L,).

We know that Z(L;) = ... = Z(L,) = 0 as the L; are simple ideals, so Z(L) = 0 and
I =0. [

5.2 Root space decomposition

In order to classify the semisimple complex Lie algebras, we will see that they can all be
decomposed as a direct sum of a Cartan subalgebra with a bunch of root spaces. The big
picture is that the structure of the root spaces determines the Lie algebra up to isomorphism.

Definition 5.6. Let L be a Lie algebra. A Cartan subalgebra is a mazimal Lie subalgebra
with two properties: H is abelian, and for h € H, ad h is diagonalizable.

On page 95, [3] shows that every semisimple complex Lie algebra has a Cartan subalgebra.
However, it is not unique.

Definition 5.7. Let L be a semisimple complex Lie algebra with Cartan subalgebra H. A
root space corresponding to the root « is the space

Lo={x€L:[hx|=alh)z,Vhe H}
In general, « € H* is only called a root when the corresponding root space L, is nonzero.

It does not seem obvious at all from the definition, but all of the root spaces L, are always
one-dimensional ([3] Proposition 10.9).

The Killing form & is a symmetric bilinear form on L, but eventually we plan to view
the roots a € H* as living in an inner product space, so that we can think of them as root
systems (to be defined shortly). We use & to define this inner product, though the definition
is rather involved.

For h € H, define 6, : H — C by 6,(k) = k(h, k). The map H — H* given by h — 6}, is
an isomorphism. (For more details than you probably wanted, see page 99 of [3]). Now we
can define a bilinear form on H*,

L):H"xXH" = C  (0p,0k) = k(h, k)
Proposition 5.8 (Proposition 10.15 of [3]). Let 8 be a basis for H* consisting of roots of
L. The above form is a real-valued inner product on the real span of 3.

As a useful convention, we define another binary operator on the same space, in terms of
this inner product.
(o, B) = 2(, B)

(8, B)
Definition 5.9. Let L be a semisimple complex Lie algebra with Cartan subalgebra H. The
root space decomposition of L is the direct sum expression

L=Ho®EPLa

where ® is the set of roots, that is,

d={a€eH :a#0,L, # 0}

14



5.3 Root systems

Before we can define a root system, we need to define the reflection s,. For o # 0 in an
inner product space F, s, is the reflection through the hyperplane perpendicular to a.. The
following formula is useful for computations.s

2(a, B)
(8, 6)

Definition 5.10. A root system is a subset R of a real inner-product space E satisfying

sa(f) = B — B=p—(ap)B

1. R is finite, R spans E, and 0 € R.
2. For a € R, the only multiples of « in R are +a.

3. For a € R, the reflection s, permutes R.
4. Fora,f € R, (B,a) € Z.

For our purposes, the most salient fact is that the roots of a semisimple complex Lie algebra
are a root system, given in the following proposition.

Proposition 5.11. Let L be a semisimple complex Lie algebra with Cartan subalgebra H
and roots ®. Let E be the real span of ®. Then ® is a root system in E.

Proof. See Example 11.2 on page 110 of [3]. O

We noted previously that a given Lie algebra may have various Cartan subalgebras, the root
space decomposition is not unique. Since we plan to show that a root system of a Lie algebra
determines the Lie algebra up to isomorphism, we need to establish that different root space
decompositions give rise to the same root systems. In order to talk about the “sameness” of
root systems, we need a notion of isomorphism.

Definition 5.12. Let R, R’ be root systems in the real inner-product spaces E, E' respectively.
A root system isomorphism is a vector space isomorphism ¢ : E — E' such that (R) =
R and (o, B) = (¢(a), d(B)) for o, B € R. If there is an isomorphism bewteen ®1 and Py,
we write &1 = P,.

This allows us to state the following proposition, which resolves the “sameness” question
raised above.

Theorem 5.13 (Theorem 12.6 of [3]). Let L be a complex semisimple Lie algebra. Let L
be a semisimple complex Lie algebra with Cartan subalgebras Hy, Hy and corresponding root
systems @1, Py. Then ®; = s,

Proof. See appendix C of [3]. O]

As with modules, root systems are unwieldy in general, so we try to decompose them into
more basic versions that have restrictive properties.

Definition 5.14. A root system R is irreducible if R cannot be expressed as a disjoint
union of two nonempty subset Ry, Ry such that (o, B) =0 for all « € Ry, 5 € Ry.
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This property is important because of the following lemma.

Lemma 5.15 (Lemma 11.8 of [3]). Every root system may be written as a disjoint union of
wrreducible root systems.

The following proposition makes an important link between irreducible root systems and
simple complex Lie algebras.

Proposition 5.16. Let L be a complexr semisimple Lie algebra with Cartan subalgebra H
and root system ®. ® is irreducible if and only if L is simple.

Proof. The “if” direction is Proposition 12.4 of [3] (found on pages 128-129), and the “only
if” direction is Proposition 14.2 (found on page 154). O

Since every root system can be written as a disjoint union of irreducible root systems, and
the irreducible root systems correspond to simple Lie algebras, and semisimple Lie algebras
can be written as direct sums of simple Lie algebras, we see why perhaps semisimple Lie
algebras are determined by their root systems. To make that determination rigorous, we
need Dynkin diagrams.

5.4 Cartan Matrix and Dynkin Diagrams

We first consider an important substructure of a root system.

Definition 5.17. A base for a root system R is a subset B C R such that B is a basis for
E and every B € R can be written in the form

B=)Y ke

a€B
where ko, € Z and all the nonzero k. have the same sign.

This allows us to sort the elements of R into two buckets: ones where the nonzero k, are
positive, and ones where the k, are negative. These two subsets are called R and R~
respectively.

Definition 5.18. Let B = (a1, o, ...qy) be an ordered base for the root system R. The
Cartan matriz is the n X n matriz where the ijth entry is (o, o).

This definition clearly depends upon the choice of base and ordering. Surprisingly, the
Cartan matrix of a root system does not depend on the choice of base (see Theorem 11.16
and appendix D of [3]).

Definition 5.19. Let B be an ordered base of a root system R. The Dynkin diagram of R
1s the graph with one vertex for each root o € B, and between each pair of vertices o, 3, there
are (o, B)(B, ) lines. Additionally, whenever (o, B)(B,a) > 1, there is an arrow pointing
towards whichever of «, 3 is longer. Alternately, one can replace arrows and instead color
longer vertices a different color.
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Note that («, 5)(5, a) is always an integer between 0 and 4 inclusive (see Lemma 11.4 of
[3]), so it makes sense to talk about that as a number of lines. Note that a Dynkin diagram
contains exactly the same information as a Cartan matrix.

Proposition 5.20. Let ® be a root system. The ® is irreducible if and only if its Dynkin
diagram is connected.

Proof. We will prove the contrapositive of both directions. First suppose that a Dynkin
diagram corresponding to R is disconnected. Then there are two disjoint sets of vertices
R1, Ry which have no lines between them. Thus for a € Ry, 3 € Rs,

2(a, 8)2(c, B) A, B)°

0= <OC,B><B705> = (575) (04,06) - (a,a)(ﬁ,ﬁ)

hence (o, ) = 0. Thus R is reducible.

Now suppose that R is reducible. Then there exist disjoint subsets Ry, Rs with («, 5) =0
for « € Ry, € Ry. Then Ry, Ry correspond to disjoint subgraphs of the Dynkin diagram.
Hence the Dynkin diagram is disconnected. O]

Next, we connect Dynkin diagrams to root systems.

Proposition 5.21 (Proposition 11.21 of [3]). Let R, R be root systems in the real vector
spaces B, FE' respectively. If the Dynkin diagrams of R and R’ are the same, then the root
systems are isomorphic.

Proof. See pages 122-123 of [3]. O

Finally, we get the theorem that relates the Cartan matrix to the isomorphism class of a
semisimple complex Lie algebra, though the statement sort of goes the opposite direction.
Don’t worry, though, the useful part (for classifying) comes as a neatly stated corollary.
First, we need to define generators of a Lie algebra.

Definition 5.22. Let L be a Lie algebra. A set {x1,...x,} generates L if every x € L can
be written as a linear combination of x1,...x, and brackets of x1,...x,.

Theorem 5.23 (Serre’s Theorem). Let C' be the Cartan matriz of a root system. Let L be
the complex Lie algebra which is generated by elements e;, fi, h; for 1 < i < satisfying

[hiyhjl =0 [hise] = cjie; [l f5] = —cjify les fil = hi
for allt, 7, and
[ei, fj] =0 (ad €i)1fcﬁ(€j) =0 (ad fz’)lfcﬁ(fj) =0

for i # 5. Then L is finite-dimensional and semisimple wth Cartan subalgebra H spanned
by {h1,... i}, and its root system has Cartan matriz C'.

Theorem 5.24 (Corollary of Serre’s Theorem). Let Ly, Ly be complex semisimple Lie alge-
bras with Cartan matriz C'. Then Ly is isomorphic to L.

So finally we have demonstrated what has been hinted at, that the Cartan matrix of a
complex semisimple Lie algebra allows one to categorize the Lie algebra into an isomorphism
class. Since we’ve also related the Cartan matrix to a root system and a Dynkin diagram,
all that remains is to classify the Dynkin diagrams.
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5.5 Final Classification

Theorem 5.25 (Theorem 13.1 of [3]). Given an irreducible root system R, the unlabelled
Dynkin diagram associated to R is either a member of the four families

Proof. See chapter 13 of [3]. O
This gives rise to the classification theorem for simple complex Lie algebras.

Theorem 5.26. Fvery finite-dimensional simple complex Lie algebra is isomorphic to one

of
sl(n,C)  so(n,C)  sp(2n,C)

for some n, or to one of the five exceptional Lie algebras, eg, ez, es, f1, ga.
Proof. See chapter 12 of [3]. O

As implied by the labelling scheme, the exceptional Lie algebras correspond to the capitalized
Dynkin diagram names. For the others, this table gives the correspondence.
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Graph | Lie algebra
A, |sl(n+1,C)

B, |so(2n+1,C)
D, | so(2n,C)
C, | sp(2n,C)

Keep in mind that the above classification of Dynkin diagrams is a classification of connected
Dynkin diagrams, but of course any Dynkin diagram is a union of connected components.
Each connected component corresponds to an irreducible root system, which corresponds to a
simple complex Lie algebra. A disconnected Dynkin diagram D corresponds to a semisimple
complex Lie algebra, where each direct summand is a simple Lie algebra corresponding to
the connected components of D.

Lie algebra ‘ Root system ‘ Dynkin diagram
direct sum | disjoint union | union of disjoint, connected subgraphs
simple irreducible connected
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Appendix: Solutions to Exercises

6 Chapter 1 Exercises

Proposition 6.1 (Exercise 1.1i). Let L be a Lie algebra, and let v € L. Then
[v,0] = [0,v] = 0.

Proof. By bilinearity of the bracket,
[v,0] = [v,v —v] = [v,0] — [v,0] =0
[O’U] = [U_va] = [U,U] - [U,’U] =0
]

Note that in the following proposition the symbol “0” is used for both the additive identity
in the field F' and the additive identity vector in L. When added to a vector, “0” refers to
a vector; when multiplied by a bracket or vector “0” refers to the identity for F'.

Lemma 6.2 (Lemma for Exercise 1.1ii). Let L be a Lie algebra over F. Let x,y € L and
a € F. Then a[z,y] = [ax,y] = [z, ay].

Proof.

alz,y] = alx,y] + 0[0,y] = [ax + 0,y] = [az, y]
alz,y| = 0[z,0] + a[z,y] = [z, ay + 0] = [az, y]

O

Proposition 6.3 (Exercise 1.1ii). Let L be a Lie algebra with x,y € L such that |x,y] # 0.
Then x and y are linearly independent over F.

Proof. Let z,y € L such that [z,y] # 0. Suppose z,y are linearly dependent over F'. Then
there exist a,b € F with a # 0,b # 0 such that ax + by = 0, or equivalently ax = —by.

Let v = [z,y]. Then av = a[z,y] = [az,y] and —bav = —blax,y] = [ax, —by]. Since
a#0,b# 0and v # 0, thus —abv # 0 so [ax, —by] # 0. However, we showed that az = —by,
so by the property of the Lie bracket, [ax, —by] = 0. Thus we reject our hypothesis that =,y
are linearly dependent and conclude that they are linearly independent. O]

Lemma 6.4 (Lemma for Exercise 1.2). For any vectors u,v, w € R?,
ux(vxw)=(u-wv—(u-v)w.
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Proof.

ux (vxw)=ux (Vw— v v’w — vl v'w? —v*wh)

= (v’ (v'w® —v*w') — (V' = v'w?),
w?(viw? — v3w?) — vl (v'w? — viwt),
u' (VP! —v'w?) — (v — vPw?))
= (v'Pw? — v*uPwt — vuPwt + olute?,
vIdw? — vPutw? — ulolw? + vzulwl,
Gulw' — vlolw® — w?ePw® 43 utw?)
= ( YWlw? — v*utwt — v uPet + vt + olulet — vlulwl,

vultw® — viutw? — ulo'w? + viulw! + viuPe® — v2u2w2,

Bulw! — vlolwd — w20t 3 wtw? + vtute® — viutu®)

= (v (u'w' + ¥ + ) — w (! + P + uP?),
v?(utw! + vPw? + utw?) — w?(ulvt + uPo? + ute?),
vu'w! + vt + Pw’) — wd(uho! + uo? + ute?))
= (v'(u - w),va(u - w),v*(u-w)) — (w'(u-v),w* (u- w),w (u-w))

= (u-w)v—(u-v)w

]

Proposition 6.5 (Exercise 1.2). The Jacobi identity holds for the cross product of vectors
in R3.

Proof. Using the above proposition,

[, [y, 2]l + [y, [z, 2] + [2, [, 9] = (2 - 2)y — (2 - y)2
+(y-z)z—(y-2)z
+(z -y —(2-2)y

=(v-2)y—(2-2)y
+(y-z)z—(x-y)2
+(z y)r—(y-2)z
=0+0+0

=0

]

Proposition 6.6 (Exercise 1.3). Let V be a finite-dimensional vector space over F and let
gl(V') be the set of all linear maps from V to V. We define a Lie bracket on this space by

[v,y] =x0y—you

where o denotes map composition. We claim that the Jacobi identity holds for this bracket
operator.
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Proof.

[, [y, 2] + [y [z, 2] + [, [2, 4] = (woyoz—zoyoux)
+yozos—zozoy)
+(zo0x0y—yoxoz)

=(xoyoz—zo0z0VY)
Fyozor—yozoz)
—l—(zoxoy—zoyox)

=zxoly z]+yolz,z]+ zo[x,y]

[z, [y, 2] + [y, [z, 2]l + [z, [z, y]] = (woyor—yowoz)
+(zozoy—x0z0Y)
+(yozox—zoyoux)

= [z, yloz+[z,2]loy+y,2]ox

Thus we reach
zoly,zl+yolzal+zolzyl=[r,yloz+[zz]oy+[y 2|0
Now we can subtract to have one side equal zero,

O=zoly,z]—[y,z]ox+yolz,x] — [z,x]oy+zolx,y] — [x,y] oz
= [z, [y, 2]] + [y, [z, 2]] + [2, [z, y]]

which is precisely the Jacobi identity. O]

Note that for n x n matrices A, B with entries A;;, B;;, the entries of the matrix product
AB are

(AB)ij = Y AuBy; (6.1)
=1

Definition 6.7. The Kronecker delta function is the function
1 e
5 = = (6.2)
0 i#]
Sometimes the alternate notation 0’ is used (equivalent to d;;).

Definition 6.8. In gl(n, F'), e;; is the matriz with a 1 in position ij and zero everwhere
else. Using the delta function, we can say that the ab-th entry of e;; is 04i0p;.

Proposition 6.9 (Lemma for Page 3). In gl(n, F'), the product of the matrices e;; and ey
1s given by the formula:

(€ijekt)ab = 0aiOnljk (6.3)
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Proof. By the general rule for square matrix products,

n

(ez‘jekl)ab = Z(ez‘j)ax(ekl)mb

r=1

Note that the term to be summed over is equal to 1 when a = 4,7 = x,k = x, and [ = b.
Since x ranges over 1,2,...n and 1 < 7,k < n, this summand is 1 when a = i¢,b = [, and
7 = k = x. In each summand, = takes a different value, so no two terms can both have
x =7 =k, but if j = k, then in one term we will have x = 5 = k. Thus

n

(eijekl)ab = Z(ei]’)aw(ekl>xb

_{1 a=1ib=1andj=k

0 otherwise

= 0aiOndjk
O
Proposition 6.10 (Page 3). In gl(n, F'), the bracket of two basis matrices is given by
[€ij, ert] = Ojr€i — birer; (6.4)

Proof.

[eij7 ekl]ab = (eijekl - eklez‘j)ab
= 04i0%10jx — OakOnjon
(5jk€il - 5iz€kj)ab = 5jk(€il)ab - 5il(€kj)ab

= 5jk5ai5lb - 5il5ka5bj

Since d;; = d;; for any 7, j, by commuting these expressions we see that they are equal. Since
the two matrices have equal entries for all 1 < a,b < n, they are equal matrices. O]

Proposition 6.11 (Exercise 1.4). Let b(n, F') be the subset of upper triangular matrices in
gl(n, F'). Then b(n, F) is a Lie algebra with the same bracket as in gl(n, F).

Proof. We need to show that b(n, F) is closed under the bracket. Let x,y € b(n, F'). Since
the product or sum of two upper triangular matrices is itself upper triangular, [z, y] = vy —yz
is upper triangular, so it is also an element of b(n, F'). O

Proposition 6.12 (Exercise 1.4). Let n(n, F') be the strictly upper triangular matrices in
gl(n, F'). Then n(n, F) is a Lie algebra with the same bracket.

Proof. Same argument as previous proposition. O
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Proposition 6.13 (Exercise 1.5). Let L = sl(2, F). If char(F') # 2 then

Z(sl(2, F)) = {(8 8) }
Z(s1(2, F)) = {(8 8) ’ (tl) (1)>}

Proof. Let L =sl(2, F). The following matrices form a basis for L.

o — 01 fe 00 (1 0
—\o o 10 9=\o0 -1

And the bracket products of these are
e, fl=9g [f,g]=2f [9,¢] = 2¢

by straightforward computation. Let y € L and let x € Z(L). Then zy = yxz. We write z
and y as linear combinations of the basis matrices e, f, g

and if char(F) = 2 then

11 T12
T =219+ Ti2e + T f =
To1 —T1n

Y =yng+ ye+ynf = (yn Y12 )
Y21 —Y11

Then we use the linearity of the bracket to compute

T12 T21
Y12 Y21

T11 12
2
Y1 Y12

X111 T21
-2

T, Y| =
[ y] Y11 Y21

Since g, e, f are linearly independent over F', from this we know that

T12 T21
Y12 Y21

= T12Y21 — T21Y12 = 0

for all y1,y, € F. This is true only if 15 = x9; = 0, regardless of the characteristic of F'.
Similarly, the coefficients of e and f must be zero, which is true only when 2 = 0 or when
x11 = 0. If char(F) = 2, then we see that g is actually the identity matrix, which clearly
commutes with everything, but in this case there are no other possible values for x11, so the
center of L is just the zero matrix and the identity matrix.

However, if char(F') # 2, then we must have x1; = 0, so the only matrix in the center of
L is the zero matrix. O

Proposition 6.14 (Exercise 1.6). Let Ly, Ly be Lie algebras and let ¢ : L1 — Ly be a
homomorphism. Then ker ¢ is an ideal of L.

Proof. We need to show that for x € Ly,y € ker¢p = {v € L; : ¢(v) = 0}, we have
[z,y] € ker ¢. Let z € L,y € ker¢. Then ¢([z,y]) = [¢(z), ¢(y)] = [¢(x),0] = 0. a
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Proposition 6.15 (Exercise 1.6). Let ¢ : Ly — Lo be a Lie algebra homomorphism. Then
im ¢ 1s a subalgebra of Ls.

Proof. We need to show that for x,y € im ¢, we have [z,y] € im¢. Let z,y € im¢. Then
there exist 2/, y’ € Ly such that ¢(z') = x,¢(y') = y. Then [2/,y] € Ly, so ¢([2',y']) € im ¢.
Since o([¢/, /]) = [9(x), 6(y")] = [, y], we see that [z, ] € im o. 0
Proposition 6.16 (Exercise 1.7). Let L be a Lie algebra such that for all a,b € L, we get
la,b] € Z(L). Then the Lie bracket is associative.

Proof. Let x,y,z € L Then [z,y] € Z(L), so [[z,y], z] = 0. We also know that [y, z] € Z(L),
so we get that [z, [y, 2]] = [~[y, 2], 2] = 0 s0 [z, [y, 2]] = [[z,y], 2] = 0. 0

Proposition 6.17 (Exercise 1.7). Let L be a Lie algebra such that the bracket is associative.
Then for xz,y € L, [x,y] € Z(L).

Proof. Let z,y,z € L. We need to show that [[z,y],2] = 0. Using anti-communitivity,
linearity, and associativity we get

[Z’ [$,y“ = —[[x,y],z] = —[—[y,.’B],Z] = Hyaﬁ]v'z] = [yv [x,z]] = [97 —[Z,$]] = _[y> [Z,{E]]
Then using the Jacobi identity and substituting —|y, [z, z|] for [z, [z, y]]
[z, [y, 21 + [y, [z, 2] + [z, [2,9]] = O
[z, [y, 2]l + 1y, [z, 2]] = [y, [z, 2] = 0
[z, [y, 21l = 0
[[z,y],2] =0

O

Proposition 6.18 (Exercise 1.8i). Let D, E be derivations of an algebra A. Then [D, E] =
Do E — FEoD is a derivation (of A).

Proof. We need to show that [D, E](zy) = z[D, E|(y) + [D, E](z)y. First we compute
Do E(zy) and E o D(zy).

Do E(zy) = D(zE(y) + E(z)y)

= D(zE(y)) + D(E(2)y)

=aDo E(y) + D(z)E(y) + Do E(x)y + E(x)D(y)
EoD(zy) =xE0 D(y) + E(z)D(y) + D(z)E(y) + E o D(z)y

Now that we’ve done that we can easily compute [D, E](zy).

[D, E](zy) = (Do E — Eo D)(zy)
= Do E(xy) — E o D(zy)
=xDoE(y)+DoE(x)y—xEoD(y)— EoD(z)y
=x(DoE(y)— EoD(y)) + (Do E(x)— EoD(x))y
= z[D, El(y) — [D, El(z)y
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Proposition 6.19 (Exercise 1.9). Let Ly, Ly be Lie algebras such that there exist bases [3
for Ly and By for Ls such that the structure constants of Ly with respect to By are equal to
the structure constants of Lo with respect to Bs. Then Ly = L.

Proof. Let 1 = {x1,22...2,} and o = {y1,¥2 ... yn} be bases for Ly, Ly as described. Then

since the structure constants are the same,

[z, ;] = E a STk
n

i, y;] = Z aijk

k=1

We define a linear map ¢ : Ly — Ly by ¢(z;) = y;. Since ¢ maps 51 to fa, ¢ is a bijection.
Also,

gb([mz,l‘]]) =9 (Z afgxk> = Z Z ai5Yk = yz, y]] = [QZS(J}Z), gb(:t]]
k=1 k=1
S0 ¢ is an isomorphism. O

Proposition 6.20 (Exercise 1.9). Let Ly, Ly be isomorphic Lie algebras. Then there exist
bases [y for L1 and [y for Lo such that the structure constants for Ly with respect to 51 are
equal to the strcture constants for Lo with respect to Ps.

Proof. Let 51 = {x1,22...x,} be any basis for L; and let ¢ : L; — Ly be an isomorphism.
Let By = {¢p(x1), p(x2),...¢(x,)}. Since ¢ is a linear bijection, fs is a basis for L,. Let afj
be the structure constants of L; with respect to S;. Then

[D(2), ()] = P([2i, 25]) (Z %%) = ajo(a)

k

so by definition a;; are the structure constants of Ly with respect to Sa. O

Proposition 6.21 (Exercise 1.10). Let L be a Lie algebra with basis {x1,z5...2z,} and
structure constants with respect to this basis afj. Then

m .t m .t m .t _
Qg Qi + Qg @G, + Q35 A, = 0

for1 <i,5,k,m,t <n.
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Proof. From the Jacobi identity

0= [l’i, [xj, l’k]] + [Ij, [xk; xz]] + [miu [Ij7xk]]

n n n
— [xz.’ Z a]nxm] —+ [[E]7 Z az;l‘m] + [l’k, CLZL«/Em]
m=1 m=1 m=1

n n n
m m m
= E AT, T + g aplz;, xm] + E a3 [Th, Tm)
m=1 m=1 m=1
n n n n n n
_ m t m t m t
=i D i | + Z i Z @t | + Z aif | D bt
m=1 t=1 t=1
n n
m
SIS S ST ) gy aes

m=1 t=1 m=1 t=1 m=1 t=1
n n
o m .t m .t m .t
= Z Z (afkai, + agsaj,, + ajja,,) T
m=1 t=1

since x; for t = 1,2,...n are linearly independent, this implies that the coefficient aJ;aj,, +

agral,, + ajjag,, is equal to zero for all values of 7, 7, k, m,t. O

Lemma 6.22 (Lemma for Exercies 1.11). Let V, W be n-dimensional vector spaces over a
field F. Then V= W. (vector space isomorphism)

Proof. Let {v;},,{w;}, be bases for V' and W respectively. Let ¢ : V' — W be a linear
map defined on v; by ¢(v;) = (w;) for i = 1,2,...n. Then for a general vector in V' given by
ayv1 + asve + . .. + a,v,, we compute

d(arv1 + agve + ...+ apvy) = a19(v1) + asP(ve) + ... + and(vy)
= awy + agwsg + ...+ a,w,

Since every element of W can be written uniquely as a linear combination of wy, ... w,, from
this we get that ¢ is one-to-one and onto. Thus ¢ is an isomorphism. O]

Proposition 6.23 (Exercise 1.11). Let Ly, Ly be n-dimensional abelian Lie algebras over F'.
Then Ly = Ly. (Lie algebra isomorphism)

Proof. As shown above, L; and Ly are isomorphic as vector space via the map ¢. We can
see that ¢ is also a Lie algebra isomorphism for abelian Lie algebras since

¢([z,y]) = ¢(0) = 0 = [o(z), 9(y)]
[l

Proposition 6.24 (Exercise 1.8ii). Let A = C*°R be the vector space of infinitely differen-
tiable functions R — R. Let D : A — A be the usual derivative D(f) = f'. Then Do D is
not a derivation for the algebra A.
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Proof.

Do D(fg)=D(f'g+ fg)
= D(f'g) + D(fd)
=9+ 19+ fd"+fdg
=DoD(f)g+ fDoD(g)+2fg
If Do D were a derivation, it would satisfy the above equation only when 2f’¢’ = 0 for all

f,g € A. But this is not true, since f(x) =z, g(z) = x gives 2f'¢' = 2. O

Lemma 6.25 (Lemma for Exercise 1.11). Let V,W be finite-dimensional isomorphic F-
vector spaces. Then dimV = dim W.

Proof. Let {v;}; be a basis for V, and let ¢ : V' — W be an isomorphism. We claim that
{é(v;)}, is a basis for W. To do this, we just need to show that {¢(v;)}", is linearly
independent.

Let ay,as...a, € F such that

a1p(v1) + asp(ve) + ... and(vy,) =0

Then by lineary of ¢,
d(ayvy + agve + ... + apv,) =0

Since ¢ is one-to-one, ker ¢ = {0}, so the above equation implies that
a1vy + asvy + ...+ ayv, =0

Since {v;} is a basis, it is linearly independent, so the above implies that a; = 0 for i =
1,2,...n. Thus {¢(v;)} is linearly independent and thus a basis of size n for W, so dim W =
n=dmV. O]

Proposition 6.26 (Exercise 1.11). Let Ly, Ly be finite-dimensional, isomorphic abelian Lie
algebras. Then dim Ly = dim L.

Proof. By the above lemma, L, Ly have equal dimension as vector spaces. O

Solution 0.1 (Exercise 1.12). The structure constants of sl(2, F') with respect to the basis

(01 O (1 0
1= 10 0 2711 0 =10 -1

are
1 1 1
ajo =0 ajg = —2 Qo3
_ 2 2 _
ajs =0 a3 =0 a3 = 2
3 3 _ 3 _
ajy =0 a3 = Aoz =

Proposition 6.27 (Exercise 1.13). sl(2,C) has no non-trivial proper ideals.
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Proof. We will show that any non-zero ideal of sl(2,C) is the whole space. Suppose I C

sl(2,C) with I # {0}. Then there exists © € I with  # 0. Let © = ae + bf + ch, where

e, f, h are the matrices 1, xo, x3 from Exerise 1.12. Since = # 0, at least one of a,b, ¢ # 0.
Since [ is an ideal, [h,z] € I, and we compute

[h, x] = alh, e] + blh, f] = 2ae — 2bf
Furthermore, since [ is an ideal, [e, [h,z]] € I and [f, [k, z]] € I, and we compute

[67 [h,l’]] = _2b[€7f] = —2bh
[f> [h,ﬂf“ = —2ah
Ifa#0o0rb+#0,then h € I. If h € I, then e, f € I because [f, h] = 2f and [h, e] = 2e.
Suppose a =0 and b = 0. Then x = ch so h € I, so then e, f € I. Thus if a,b are both

zero or at least one is nonzero, then h € I, and if h € I, then e, f € I. Thus for any values
of a,b,c, e, f,h € I, so I contains a basis for sl(2,C), so I =sl(2,C). ]

Proposition 6.28 (Exercise 1.14i). Let L be the 3-dimensional Lie algebra over C with basis
{z,y, 2z} where the bracket is defined by

[$ay] =z, [?/;Z] =7, [Z,ZL’] =Y
Then L is isomorphic to the Lie subalgebra of gl(3,C) consisting of antisymmetric matrices.

Proof. Let A be the subalgebra of gl(3,C) of antisymmetric matrices. Take the basis a, b, ¢
for A where

0 01 0 10 0 0 0
a=1|10 0 0 b=1-1 0 0 c=10 0 1
-1 00 0 0 O 0 -1 0

One can crunch numbers and compute that
la,b] =¢, [b,c]=a, [c,a] =D

We define a map ¢ : L — A by ¢(x) = a,¢(y) = b,¢(z) = c¢. Since a,b,c and x,y, z are
bases, ¢ is a bijection, and by the above in conjunction with bilinearity, ¢ preserves bracket
products. Thus ¢ is an isomorphism. O

Proposition 6.29 (Exercise 1.14ii). Let L be the 3-dimensional Lie algebra over C with
basis {x,y, z} where the bracket is defined by

[x,y] =% [y,z] =T, [Z,CL’] =Yy
Then L =5s1(2,C). (Lie algebra isomorphism)

Proof. Let (Z,y, 2) be the matrices

S _1(i o0 Lo 1y L _1(0
“olo =) Y73\ =1 0 “oli 0
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We claim that these matrices are linearly independent over C. Let u,v,w € C such that
uZ 4+ vy + wz = 0. Then clearly u = 0, since the upper left entry of ¢ and 2 are zero. From
the other matrix positions we get the equations

v/2+w/2=0
—v/24+w/2 =0

Adding these equations gives w = 0, and then plugging in w = 0 into one of them
gives v = 0. Thus, (%,9,2) are linearly independent over C, and since sl(2,C) is a three
dimensional vector space, they must also span it, and thus be a basis for sl(2, C).

Straightforward commputation of the bracket products in sl(2, C) of these matrices gives

i34 (0 D)4 3 -

R NI TR BT A

()10 D)1 )
) =

Finally, we define a map ¢ : sl(2,C) — L by ¢(z ,0(9) = y,¢0(2) = 2. Since both
(x,y,z2) and (Z,9, 2) are bases, ¢ is a bijection, and by our computations we've seen that ¢
preserves the bracket operator. Thus, ¢ is an isomorphism of Lie algebras. O

Proposition 6.30 (Exercise 1.151). Let S € gl(n, F'). Define
glg(n, F) :={r €gl(n, F):27S = —Sa}
where 2" denotes the transpose of x. Then glg(n, F) is a subalgebra of gl n, F).

Proof. We need to show that glg(n, F') is closed under vector addition, scalar multiplication,
and the bracket product. First we show closure under addition. Let z,y € glg(n, F'). Then

(z+y)'S=@"+y")S=a"S+y"S=-Sr—Sy=—-S(x+vy)
so x4y € glg(n, F). Now let = € glg(n, F') and a € F'. Then
(azx)’'S = a(2™)S = a(2'S) = a(—Sx) = —S(ax)
so azr € glg(n, F'). Finally, for z,y € glg(n, F),

[, y]"S = (zy —y2)"S = (2y)"S — (y2)"S = y"2"S — 2Ty’ S
=~y Sz + 27 Sy = Syx — Sxy = S(yx — xy) = S[y, 7]

Thus [z,y] € glg(n, F). O
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Proposition 6.31 (Exercise 1.15ii). Let S be

-0
gls(2,R) = {(g 2) ‘a€ R}

Proof. Let x = glg(2,R) where

Then

Then

Thus a =d,c=0,d =0. Thus
a 0
e ={(3 %) ues)

Proposition 6.32 (Exercise 1.15iii). There is no matriz S € gl(2,R) such that

glo(2,R) = {(g 2) :a,bER}
D:{(g 2) :a,bER}

and suppose there exists S € gl(2,R) such that glg(2,R) = D. let x € D, where
r = I 0
- 0 )
for some fixed 1,75 € R. Since z € glg(2,R), 7S = —Sz so #S = —Sx.
1 0 51 So (51 s\ (1 O
0 x4 S3 S84 53 S4 0 @
T151 T1S52 —T181 —T2S52
L2583 X284 —X183 —T254
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so we have four equations, one for each position. By the first, we must have z; = 0 or s; = 0,
by the second xy = —x5 or so = 0, by the third, 1 = —x5 or s3 = 0, and by the fourth,
9 =0 or s, = 0.

Clearly, there are matrices in D which do not have a = 0,b = 0, or a = —b. Yet this
matrix equation must still hold for such matrices, so we conclude that S = 0, the zero matrix.
However, gly(2,R) = gl(2,R) # D. Thus no such S exists. O

Proposition 6.33 (Exercies 1.15iv). gl;,(3,R) = R} (Lie algebra isomorphism)

Proof. Let i = (1,0,0),7 = (0,1,0),k = (0,0,1) be the standard basis for R, and note
that i x j = k,j x k =i, and k x i = j. It turns out that gl; (3,R) is the subalgebra of
anti-symmetric matrices, which as shown previously has basis

0 01 10 0
0 0 0 b=1-1 0 0 0
0 0 0 0 -1

0
c=10
0 0

O = O

where [a,0] = ¢, [b,c] = a, and [c,a] = b. We define ¢ : R}, — gl; (3,R) by ¢(i) = a, (b)) =
J, ¢(k) = c. Since i, j, k and a, b, c are bases and ¢ preserves brackets, ¢ is an isomorphism.

]
Proposition 6.34 (Exercise 1.16). If F' is a field of characteristic 2, then there exist algebras
over F' which satisfy anticommuntivity [x,y| = —[y, z] and the Jacobi identity but not
[z, x] = 0.

Proof. Let A be the algebra on Z, @ Z, with basis 1 = (1,0) ,x2 = (0,1). We define a
bilinear map [,| : Zo @ Zy X Zy ® Zo — 7o & Zs by the table

0 Ty To T + Xy
0 0 0 0 0
T 0 T1+ Ty T1+ To 0
i) 0 T1+ Ty T1+ To 0
T+ X2 0 0 0 0

This bracket is symmetric as visible from the table, and since everything has order 2, it is
thus antisymmetric. The Jacobi identity is seen to be true because every bracket product is
either 0 or z; + x2, and every bracket involving 0 or x; + x5 is zero. Thus [z, [y, z]] = 0 for
x,Y, 2 € Lo ® Zy. However, [xq,x1] # 0, so this is not a Lie bracket. ]

Proposition 6.35 (Exercise 1.17). Let V' be a vector space over C with basis B = {v;}I;.
Let x : V. — V be a diagonalisable linear map with eigenvalues \;, that is, x(v;) = \wv;.
Then ad z : gl(V)) — gl(V') is diagonlisable with eignvalues \; — \; for 1 <i,5 < n.

Proof. Let y;; : V' — V be the map with matrix e;; € gl(n, C). We will show that ad z(y;;) =
(Ai — Aj)vij, so y;; for 1 < 4,5 < n are eigenvectors of ad x with eigenvalues \; — \;. From
this we also will get that {y;; }1<i j<n is a basis for gl(V).
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First we will show that e;j[x] = Aje;; and [z]e;; = Aje;j. The matrix of x is

A 0 0 0 O
0 X O 0 O
(2] = 0O 0 X3 0 O
0 : 0
0O 0 O An

so the abth entry of [z] is [%]ay = OapAa = OapXo. The abth entry of e;; is (€;j)ap = 0aidjo-
Using the formula (AB)a = > p_; AakBrp for the product of two matrices,

n

<€ij [SU])ab = Z(ezj)ak[ﬂi]kb = Z 5a16jk5kb>\b = 0aiNp Z 5jk5kb
k=1 k=1

k=1

Since 1 < j,b < n, in the sum > ;_, 010k, all terms will be zero except when j = k = b,
and if j = b then there will be a nonzero term since k ranges from 1 to n. Thus this sum
term is equal to d;,. Note also that because of the factor d;;, the only time this product is
nonzero is when j = b, so we can replace A, with A;. Thus

(eis[7])ab = GaiMudsp = Aj(€ij)ab
Thus
eij[z] = Ajei;

Using the product formula for matrices again,

n

([x]ei]’)ab = Z[x]ak(eij)kb = Z 5ak)\a5ik5jb = )\aéjb Z Oaklir = )\aéai(sjb = /\i<eij)ab

k=1 k=1 k=1

S0
[z]ei; = Aiey;
Now we are able to compute ad x(y;;).
adx(y;;) = [z, y] =x oy —yiyox

We know that zoy;; has matrix [z]e;; = A;e;; and that y;; ox has matrix e;;[z] = \je;;. Then
by the previous lemmas about the linearity of the matrix of a transformation, z oy;; —y;jo0x
has matrix A\;e;; — Aje;; = (A; — Aj)e;;. Then the map corresponding to this matrix must be
(>\2 — )\J)yw Thus ad .I‘(yw) = (>\2 — )\J)yw as desired. ]

Proposition 6.36 (Exercise 1.18). Let L be a Lie algebra over F. Let
Der(L) ={adz:z € L}

Then IDer(L) is an ideal of Der(L).
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Proof. First we show that IDer(L) is closed under addition. Let z,y € L, adx,ady €
[Der(L).

(adz +ady)(z) =adx(z) + ady(z) = [z, 2] + [y, 2] = [r + y, 2] = ad(z + y)(2)

Thus ad z 4+ ad y is in IDer(L). Now we show that IDer(L) is closed under scalar multiplica-
tion. Let a € F'.

aad z(z) = a[z, 2] = |az, z] = ad(ax)(2)

Thus aad z is in IDer(L). Now we show that IDer satisfies the ideal property. Let D &€
Der(L),adz € IDer(L). Then

[D,ad z](z ) = Doadx(z) —adx o D(2)
D([z, 2]) — [, D(2)]
[ D(2)] + [D(), 2] = [, D(2)]
= [D(2), 2]
= ad(D(x))(2)
Thus [D,ad z] = ad D(x), so [D,ad z] € IDer(L). O

Proposition 6.37 (Exercise 1.19). Let A be an algebra and let 6 : A — A be a derivation.

Then .
) = 3 (1)o@

r=0
forall z,y € A.

Proof. Clearly this is true for n = 1 by the definition of a derivation. We proceed by
induction on n. Suppose the statement is true for n — 1, that is,

e -3 ot

r=0

for all x,y € A. Then
0" (zy) = 6(0" (xy))

n-1 ( )57’“ (2)6" D (y) + 6" (2)6™ " ()

n—1 r4+1 g 7“+1) — n—r
6" () ) + 2)0" " (y)
r=0 " =0

r

|
3 3
[l
- O
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Now set s = r + 1. Then this is equal to

—2(3_1)55 o+ 3 (7 e

r=

" )E@r +z( Do

r=0

>
(1))@ (" e
(= (7Y

I
<
3 | M:
o

=

It is a basic identity that
o)) = 0)
+ =
r—1 T T

n

§"(xy) = > 6" (x)8" " (y)

r=0

thus we finally have

Since the statement is true for n = 1 and if true for n — 1 it must be true for n, thus the
statement is true for n € N by the principle of induction. O
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7 Chapter 2 Exercises

Proposition 7.1 (Exercise 2.1). Let I, J be ideals of a Lie algebra L. Then
I+J:={es+y:xelyelJ}
is an ideal of L.

Proof. We need to show that I + J is a vector subspace of L and that fora € L;b e I + J,
we have [a,b] € I + J.

Let v,w € I + J. Then v = v; + v; and w = w; + w; where v;,w; € I and vj,w; € J.
Then v+ w = (v; + v;) + (w; + w;) = (v; +w;) + (v; + w;). Since I, J are vector subspaces,
vi+w; €I and v; +w; € J. Thusv+we I+ J.

Let A € F. Then Av = A(v; + vj) = Av; + Av;. Since I, J are vector subspaces, Av; € [
and A\v; € J. Thus Av € I + J.

Let a€ L,be I+ J. Then b =b; + b; so

[a,b] = [a,b; + bj] = [a, b;] + [a, b]
Since I, J are ideals of L, [a,b;] € I and [a,b;] € J. Thus [a,b] € I + J. O
Definition 7.2. Let I, J be ideals of a Lie algebra L. Then we define
[I,J] := Span{|z,ylx € I,y € J}
Proposition 7.3 (Exercise 2.2). si(2,C)" = si(2,C)
Proof. Take the basis for s{(2,C) given by

() r=(19) =0 %)

We compute the bracket products
e, fl=9g [f,g]=2f [9,¢] = 2¢

Since g, e, f are linearly independent over C, so are g,2f,2e. Thus sl(2,C)" has dimension
at least 3. Since sl(2,C)" is a span of vectors in sl(2,C), it is a subspace. A subspace of
equal dimension must be the whole space. Thus si(2,C)" = si(2,C). O

Proposition 7.4 (Exercise 2.4). Let L be a Lie algebra. Then L/Z(L) is isomorphic to a
subalgebra of gl(L).

Proof. Consider the map ad : L — gl(L) where ad(z) = ad, is the map ad, : L — L
given by ad,(y) = [z,y]. As shown on pages 4-5 of Erdmann and Wildon, ad is linear and
bracket-preserving, with ker(ad) = Z(L). As shown in Exercise 1.6, im(ad) is a subalgebra
of gl(L). By the First Isomorphism Theorem,
L/ker(ad) = im(ad)
L/Z(L) = im(ad)

Thus L/Z(L) is isomorphic to a subalgebra of gl(L). O
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Proposition 7.5 (Exercise 2.31). Let L be a Lie algebra over F', and let I be an ideal of L.
We define a bracket on L/I by

w1, z+ 1] =[w,z]+1
We claim that this bracket is bilinear.
Proof. Let A\, Ay € F and vy, v9,w € L. Then
A(vr + 1)+ Xo(ve + 1), w+ I = [(Mvr + 1) + (Mave + 1), w + ]
= [(Mv1 + Avg) + T, w + 1
= [Mv1 + Avg, w] + 1

(

[)\11)1,’[1)] + [)\21)2, UJ]) + 1
= ([Mvrw] + I) + ([Aave, w] + 1)
= (Mi[vr, w] + 1) + (A2fva, w] + 1)

thus the bracket is linear in the first component.

[w+ I, M\ (vy + 1)+ Aa(ve+ 1] = [w+ I, (Avr + Agve) + 1]
= [w, \yvy + Aovo] + T
([w, Adyv1] + [w, Agwa]) + 1
= ([w, \yv1] + 1) + ([w, Agve] + 1)
= (M[w,v1] + 1) + (Nofw, vo] + 1)

thus the bracket is linear in the second component. This shows that the bracket is bilinear.
m

Proposition 7.6 (Exercise 2.31). Let L be a Lie algebra over F' and let I be an ideal of L.
Then the bracket on L/I satisfies
[z,2] =0
forxze L/I.
Proof. Let ve Lysov+1 € L/I. Then
v+ Lo+ I =[wv]+1=0+1
where 0 + I is the identity for L/I. O

Proposition 7.7 (Exercies 2.3i). Let L be a Lie algebra over F, and let I be an ideal of L.
The the bracket on L/I satisfies the Jacobi identity.

Proof. Let u+ I[,v+ I,w+ 1 € L/I. Then
w+ I, v+l w+I]|+v+1 | w+Lu+I)|+[w+I,[u+1,0+ ]
=u+1I,[v,w]+ I+ v+ 1, |wu] + I+ [w+1,[u,v]+ ]
= ([u, [v, w]] +I) + ([v, [w, ul| —1—1) + ([w,[u,v]] +I)

= ([w, [, w]] + [v, [w, u]] + [w, [u,0]]) + T
=0+1

where 0 + I is the additive identity of L/I. O
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Proposition 7.8 (Exercise 2.3ii). Let I be an ideal of Lie algebra L over F. Define
m:L—LJ/I
by m(2) = z+ 1. Then w is a Lie algebra homomorphism.
Proof. First we show that m is a linear map. Let a € F and u,v € L
mlau+v) = (au+v)+I=(au+ 1)+ (v+1)=alu+I)+ (v+1)=an(u) + 7(v)
so 7 is linear. Now we show that 7 preserves the bracket.
m([u,v]) = [u,v] + 1 = [u+ I,v+ 1] = [1(u), 7(v)]
Thus 7 is a Lie algebra homomorphism. O

Proposition 7.9 (Exercise 2.5). Let L be a Lie algebra, and let v € L'. Then tradv = 0.
Proof. Let x,y,z € L. Then

adfz, y](2) = [[z,y], 7]
= —[z,[z,y] by anticommutativity
= [z, [y, 2]] + [y, [z, 2]] by Jacobi identity
= [y, 2] = ly, [=, ]

=adzroady(z) —adyoadz(z)

Thus trad[z,y] = tr(adz ocady — ady oad x) = 0. Since v is a linear combination of [z;, y;]
and tr is linear,

tradv = tr adZai[xi,y,;] = Zai trad[z;, y;] = ZaiO =0

2 3

Proposition 7.10 (Exercise 2.61). gl(2,C) = s1(2,C) @ C

{5 e

Then C 2 C by the isomorphism
0 (@ 0
0 a

We claim that gl(2,C) = sl(2,C) EB(Q. If we think of sl(2, C) & C not as ordered tuples but as
sums of elements from sl(2, C) and C, then we see that sl(2,C) @ C C gl(2,C). Then since

(090 )eseo
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and
10\ 1/1 0 1/10 )
(0 1)‘5(0 —1>+§(0 0)631(2’@@@
00\ -1/1 0\ 1/10 )

Thus sl(2, C) contains a basis for gl(2,C) so it is the entire space. O
Proposition 7.11 (Exercise 2.6ii). Let Ly, Ly be Lie algebras. Then

Z(Ly & Z3) = Z(Ly) & Z(Lo) (7.1)
Proof.

( )+ [(z1,%2), (Y1, y2)] = 0 for all (y1,y2) € L1 @ Lo}
(x1,22) : ([x1, 1], [re, y2]) = (0,0) for all y; € Ly, y2 € Lo}
( ):ixy € Z(Ly), 2z € Z(Lo)

(Ly) @ Z(Ls)

Il
N

[
Proposition 7.12 (Exercise 2.6ii). Let Ly, Ly be Lie algebras. Then L} & Ly = (L, & Ls)'.
Proof. Let L = L1 @ L.
= span{[z,y| : z,y € L}
= span{[(x1, 2), (y1,¥2)] : T1, 91 € L1,22,y2 € Lo}

[
= span{ ([z1, y1], [T2,92]) : 1,91 € L1, 20,2 € Lo}
= span{ [z, y1] : x1,y1 € L1} & span{[xe, y2| : T2, y2 € Lo}

=L} ® L,
[l
Lemma 7.13 (Lemma for Exercise 2.6ii). Let Ly, Lo, Ly be Lie algebras. Then
(L1 ® Lo) @ Ly = L1 & (Ly & Ls)
Proof. The map ((x1,x3),x3) — (21, (22, x3)) is clearly an isomorphism. O

Proposition 7.14 (Exercise 2.6ii). If L = &% ,L;, then Z(L) = ®%_Z(L;) for k € N.

Proof. We have already showed that this is true for £ = 2 and it is obviously true for k = 1.
Suppose it is true for £ = n. Then

() ) () - (@) -

so then it is true for k = n + 1. Thus it is true for k € N. O]
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Proposition 7.15 (Exercise 2.6ii). If L = &% ,L;, then L' = ®%_| L] for k € N.

Proof. 1t is obvious for k = 1, and we have shown this is true for £k = 2. Suppose it is true
for k = n. Then

n+1 ! n / n / n n+1
(@ u) _ (@ Le L> _ (@ Li) 5 (L) = (@w) & (L) = DL
i=1 i=1 i=1 i=1 i=1
so then it is true for kK = n + 1. Thus it is true for k € N. O]

Proposition 7.16 (Exercise 2.7i). Let Ly, Ly be Lie algebras over F. Then

p1:L1® Lo — Ly pi(x,22) =24
p2: Ly @ Ly — Lo pa(T1, T2) = X9

are Lie algebra homomorphisms.
Proof. Let a,b € F,x1,y1 € L1,x2,y2 € Ly. We show p; is linear.
pi(alzr, 2) + (y1,92)) = pr(awy + y1, aws + y2) = azy + y1 = api (1, 22) + pr(y1, 2)
We show p; is bracket-preserving.
pl([(l‘h%)a (yl,y2)]) = pi([z1, 1], [22, 42]) = [21, 91] = [p1 (1, 22), p1 (Y1, Y2)]
We show that p, is linear.
D2 (a($1, x2) + (Y1, 3/2)) = palazy + Y1, ax2 + y2) = axy + Yo = apa(r1, T2) + P2(Y1,Y2)
We show that ps is bracket-preserving.
pz([(mhb)a (yl,y2)]) = pa([z1, 1], [72, ¥2]) = [22, 2] = [p2(1, 22), P2(V1, Y2)]
Thus py, po are Lie algebra homomorphisms. O

Proposition 7.17 (Exercise 2.71). Let Ly, Ly be Lie algebras. Then

I = {(21,0) : 2y € Ly}
I ={(0,29) : &3 € Ly}

are ideals of L1 @ Ly with Iy = Ly and I3 = Ls.

Proof. We showed that py, ps defined above were Lie algebra homomorphisms. Since ker p; =
I, and ker py = Iy, we know that I, Iy are ideals of Ly & Ly. We define ¢; : I} — L; by
¢1(x1,0) =z and ¢g : [s — Lo by ¢2(0,29) = 2. ¢1, o are easily seen to be isomorphisms.

O
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Proposition 7.18 (Exercise 2.7ii). Let Ly, Ly be Lie algebras with no non-trivial proper
ideals. Define I, I by

I, = {(1’1,0) 1 € Ll}
[2 = {(O,$2) 1 Xo € LQ}

Let J be a non-trivial proper ideal of L1 @ Ly such that JN I, =0 and JN Iy = 0. Then the
projections

pr:dJ =1 p1($1,l’2) = (55170)
p2:dJ = Iy p2(z1,72) = (0, 22)

are 1somorphisms.

Proof. We have shown in part (i) that p;, po are homomorphisms, so we just need to show
that they are bijections. Since JNI; = 0 and JNIy = 0, for all (x1,z5) € J either x; = x5 = 0
or neither of x1, x5 are zero. Thus ker p; = ker p, = 0, so p1, p2 are one-to-one.

We claim that p; is onto. First we show that im p; is an ideal of I;. Let (z1,0) € imp,
and (y1,0) € I;. Then there exists (z1,22) € J. Then

[(21,0), (y1,0)] = ([x1, 2], [0,0]) = ([z1,21],0)

Since J is an ideal and (z1, z2) € J and (y1,0) € L, [(z1, 2), (y1,0)] € J. Thus ([z1, y1], [22,0])
J, so p1([x1, 1], [x2,0]) = ([z1,41],0) € imp;. Thus imp; is an ideal of I;. Since I; has no
non-trivial proper ideals, im p; = Iy, so p; is onto.

The same argument works to show that im py is an ideal of Iy and so py is onto. Thus
p1, P2 are isomorphisms. O

Lemma 7.19 (Lemma for Exercise 2.7iii). Let I, J be ideals of L. Then I NJ is an ideal of
L.

Proof. Let + € INJyy € L. Then z € [ and x € J so [z,y] € [ and [z,y] € J so
[z, yl e INJ. O

Lemma 7.20. Let I,J be ideals of L. Then I U J is an ideal of L.

Proof. Let x € IUJ andy € L. Thenz € I or x € J, so [z,y] € [ or [z,y] € J. Thus
[z,y] € TUJ. O

Proposition 7.21 (Exercise 2.7iii). Let Ly, Ly be non-isomorphic Lie algebras each with no
non-trivial proper ideals and let L = Ly @& Lo. Then L has exactly two non-trivial proper
1deals, which are respectively isomorphic to Ly and Lo.

Proof. We have shown in part (ii) that

Il = {(Zﬂl,O) 1T € Ll}
[2 = {(O,l’g) 1 Xo € LQ}
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are ideals of L with I; = L; and Iy = L,. Thus we must show that there are no other
non-trivial proper ideals of L.

Let J be a non-trivial proper ideal of L with J not equal to I; or I5. If JNT # 0
then J N I is a non-trivial proper ideal of Iy, but /; has no non-trivial proper ideals. Thus
J N I; = 0. For analogous reasons, J N Iy = 0. Then by part (ii), J is isomorphic to I; and
Iy, s0 J = Ly = Ly. But by hypothesis, L; 2 Lyo. Thus no such J exists. Thus L has exactly
two non-trivial proper ideals. O

Proposition 7.22 (Exercise 2.7iv). Let Ly be a one-dimensional Lie algebra over an infinite
field F'. Let Ly = Ly. Then L = Ly & Lo has infinitely many different ideals.

Proof. Ly must be infinite since F is infinite. Let L, = span{z}. Since L, is one-dimensional,
all bracket products are zero, so any subalgebra is an ideal. Since F' is infinite, it contains
a subset isomorphic to Q which will contain a subset isomorphic to Z. Then the principal
ideals
<x>=A{nzx:ne€Z’}
<2z >={n(2x):n €7}
c < kx >={n(kzx):ne€Z}

are infinitey many different ideals of L;. Thus from any of these we can make an ideal of
Ly & Ly by adding a zero in the Ly position. O

Proposition 7.23 (Exercise 2.8a). Let ¢ : L; — Lo be an onto homomorphism of Lie
algebras. Then ¢(Lq/) = Lof.

Proof. By definition, Lof = {[x2,ys] : x2,y2 € La}. Since ¢ is onto, for all z yo € Ly there
exist xq1,y; € Ly such that ¢(z1) = x9 and ¢(y;) = y2. Thus

Lyt =A{[¢(x1), o(y1)] - w1,91 € L} = {[@([z1,91]) : 21,91 € La} = ¢(La/)
O

Proposition 7.24 (Exercise 2.8b). Let ¢ : L1 — Lo be an isomorphism. Then ¢(Z(L1)) =
Z(Ls).

Proof. Let x € Z(Ly). We need to show that for all b € Ly, [¢(x),b] = 0. Let b € Ly. Then
there exists y € Ly such that ¢(y) = b. Since z € Z(L;), we know that [z,y] = 0, so

[6(x), 6] = [¢(x), o(y)] = &([x, y]) = (0) = 0

Thus ¢(Z(L1) C Z(Lo).

Now suppose b € Z(Ls). We need to show that there exists x € Z(Lp) such that
¢(x) = b. Since ¢ is onto, there exists x € L; such that ¢(z) = b. Then for y € Ly,
[6(z),0(y)] = 0 = ¢([z,y]). Since ¢ is one-to-one, this implies that [z,y] = 0. Thus
x € Z(Ly), s0 Z(Lay) C ¢(Z(Ly)). O

Proposition 7.25 (Exercise 2.8b). Let ¢ : Ly — Ly be an onto Lie algebra homomorphism.
Then Z(Ls) is not necesarily contained in ¢(Z(Ly)).
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Proof. We provide a specific counterexample. Let L; be the Lie algebra

Ll = Span{zla 22, 23, T, y}
[2i, 2] = 25, 2] = [75,9] = 0
[z, y] ==
so Z(Ly) = span{z, 29, 23} and L} = span{x}. Let Ly be the three dimensional abelian Lie

algebra spanned by wy, wy, ws. Note that Z(Lg) = Lo.
Let ¢ : L1 — Lo be the linear map defined by

¢(z) =0

o(y) = w

P(21) = ¢( 2) = Wy

P(z3) =
Then since ¢(L;) contains a basis for Ly, ¢ is onto. It is also a homomorphism, because

[¢(a), $(b)] = 06([a, b]) = ¢(Ax) = Ao(z) =

for any a,b € Ly, for some A € F. Thus ¢ is a homomorphism. However, ¢(Z(L;)) =
span{wsy, wa} # Z(Ly) = Lo. O

Proposition 7.26 (Exercise 2.8¢c). Let Ly, Ly be Lie algebras over F. If ¢ : Ly — Ly is an
isomorphism and x € Ly such that ad x diagonlisable, then ad ¢(x) is diagonlisable.

Proof. Let = {v;}!; be a basis for L; so that ad x is diagonlisable with respect to 5. Then
ad z(v;) = [z,v;] = \w; for A; € F. Then ¢(f3) is a basis for Lo, and

ad ¢(x)(d(vi)) = [0(x), d(vi)] = ¢([z, vi]) = p(Aivs) = Xig(vi)
so ad ¢(x) is diagonlisable with respect to ¢(f3). O]

Proposition 7.27 (Exercise 2.8¢). Let Ly, Ly be Lie algebras over F, and let ¢ : Ly — Ly
be an onto homomorphism. Let x € Ly such that adx is diagonlisable. Then ad ¢(z) is
diagonalisable.

Proof. Let = {v;}!; be a basis for L; so that ad x is diagonlisable with respect to 5. Then
adz(v;) = [x,v;] = Nv; for A\; € F. Since ¢ is an onto homomorphism, ¢(/3) is a spanning
set for Ly. Then ¢(/3) contains a basis for Lo, denote this basis by v, where v C ¢(3). Define
B = ¢~ (7). Then for all v; € 8’ (equivalently for each ¢(v;) € ),

ad ¢(z)(¢(v;)) = [9(x), o(vi)] = o[z, vi]) = ¢(Aivs) = Aigp(vi)
Thus ad ¢(z) is diagonlisable with respect to 7. O

Proposition 7.28 (Exercise 2.9). R} =2 L = {z € gl(3,R) : 2! = —z}.
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Proof. We know that i = (1,0,0),5 = (0,1,0),k = (0,0, 1) forms a basis for R3 with
[Z,j]:]{? [jvk]zl [kJ]ZJ

We also know that

0 10 0 0 1 00 0
e=|[-10 0 f=o0 00 g=10 0 -1
0 0 0 ~1 0 0 01 0

forms a basis for L with
le,fl=g9 [f.gl=e lgel=Ff
Thus ¢ : R3 — L defined by ¢(i) = e, ¢(j) = f, ¢(k) = h is an isomorphism.

Proposition 7.29 (Exercise 2.9). Let

then L1 % Lo as Lie algebras.
Proof. First we claim that L) C Z(Ly). Let A, B € Ly be

0 a b 0 e f
A=10 0 ¢ B=10 0 g
000 000
We compute the bracket product of A and B:
0 0 ag—ce
[A,B|=AB—-BA=|(0 0 0
00 0
Thus
0 01
Ly=span C= [0 0 0
0 00

Then for A € Ly, C € L), we compute [A,C] =0. Thus C € Z(L), so Ly C Z(Ls).
Now we claim that L} Z Z(Ly). We know that

e} )
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but we compute
01 01 0 -1 0 0
GG a)l-G0)#60)

(0 o) # 200
Thus L} € Z(Ly).

Suppose ¢ : Ly — Ly were an isomorphism. Then ¢ would preserve the property of the
derived algebra being contained in the center, but since these algebras do not share this
property, no such isomorphism exists. Thus L; 2 Ls. O

SO

To summarize our results for Exercise 2.9, we showed that (i) and (iv) are isomorphic
and that (ii) and (iii) are not isomorphic. It is easy to see that (i) is not isomorphic to (ii) or
(iii), since the derived algebra for (i) has dimension 3 and the derived algebras for (ii) and
(ili) have dimension 1.

Proposition 7.30 (Exercise 2.10). Let F' be a field. Then gl(n, F')" =sl(n, F).

Proof. Since [z, y] = xy—yx has trace zero for any x,y € gl(n, F), clearly gl(n, F')" C sl(n, F).
To show equality, we will show that gl(n, F') contains a basis for sl(n, F'). This makes it a
subspace of equal dimension.

A basis for sl(n, F') is given by e;; for i # j and e; — €;41,41 for 1 <1i < n, as stated on
page 3 of Erdmann and Wildon. Using the formula for bracket products of e;; also on page
3, we compute

[eil, 61]'] = 51161']' = €45 for ¢ 7éj
€415 €it1i] = Oit1i+1€ii — 0ii€it1i41 = € — €ip1441 for 1 <i < n
Thus gl(n, F')" contains this basis for sl(n, F’), so it is a subspace of equal dimension, so
gl(n, F') =sl(n, F). O
Proposition 7.31 (Exercise 2.11). Let S € gl(n, F') and let P be an invertible matriz in
gl(n, F). Let A= PTSP. Then gl (n, F) = glg(n, F) (Lie algebra isomorphism).

Proof. Define ¢ : glg(n, F) — gly(n, F) by ¢(z) = P7'xP. First we show that ¢ actually
maps into gl,(n, F'), so we need to show that for x € glg(n, F), ¢(z) € gly(n, F). Let
x € glg(n, F). Then
'S = —Sx
PTatS = —PTSy
PT3"SP = —-P"SzP
PTal(PT)y'PTSP = —PTSPP~ 2P
o(x)' PTSP = —PTSP¢(x)
¢(x)" A= —Ad(z)
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thus ¢(x) € gly(n, F).
Now we show that ¢ is one-to-one. Let x,y € glg(n, F') with x = y. Then

P—lm :—1 y
P lazpP =P lyP
o(z) = o(y)

thus ¢ is one-to-one.
Now we show that ¢ is onto. Let z € gl,(n, F). We claim that PzP~! € glg(n, F) and
that ¢(PzP~') = z. Since z € gl (n, F),
2'PTSP =—-P'SPz
(P HTTp"'SP = —-SPz
(PzPHI'SP=-SPz
(PzPH!'S = —S(PzP™1)
thus PzP~! € gly(n, F). Then ¢(PzP~') = P"'P2P~'P = 2. Thus ¢ is onto.
Finally, we show that ¢ is a homomorphism. Let x,y € glg(n, F'). Then
$[z.y]) = P~ (zy — yz)P
=P layP — P lyzP
= P lyayPP 'yP — P"lyPP 2P
= ¢(x)o(y) — o(y)o(w)
= [o(x), ¢(y)]

thus ¢ preserves the bracket. Thus we have shown that ¢ is a bijection and a homomorphism,
SO ¢ is an isomorphism. O]

Proposition 7.32 (Exercise 2.12). Let S be an n x n intvertible matriz with entries in C.
Then for x € glg(n,C), trx = 0.

Proof. Let x € glg(n,C) = {y € gl(n,C) : y*'S = —Sy}. Then

'S = -9z

r=-S"1218

So then the traces are equal,
tro = tr(—=S'2’S) = —tr(S7'2’S) = —tr(2”S7'S) = —tr(z”) = —tra
Thus trz = — trx, and since trz € C, we must have trx = 0. O
Proposition 7.33 (Exercise 2.13). Let I be an ideal of the Lie algebra L over field F'. Then
B=Cr(I)={x€L:[r,al=0 for ae I}
s an ideal of L.
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Proof. First we show that B is closed under addition in L. Let b;,bo € B and let a € I.
Then

[b1+bg,a] = [bl,a]+[bg,a] :0+O:O

thus b; + by € B.
Now we show that B is closed under scalar multiplication from F. Let A € F'and b € B
and a € I. Then

[Ab,a] = A[b,a] =0

thus \b € B.
Now we show that for b € B, y € L, [y,b] € B. Let a € I. Since I is an ideal of L,
la,y] € I, so by definition of B, [b,a] =0 and [b, [a,y]] = 0. Then by the Jacobi identity,

la, [y, b]] + [y, [b, a]] + [b,[a,y]] = 0

Since [b,a] = 0 and [b, [a,y]] = 0, the second and third terms are zero. Thus [a, [y, b]] = 0,
so [[y,b], a] = 0 so by definition of B, [y,b] € B. Thus B is an ideal of L. O

Proposition 7.34 (Exercise 2.14i). Let L be all matrices

0 f(z) h(z,y)
0 0 0

L is a Lie algebra (over R) with the bracket |a,b] = ab — ba.

Proof. Clearly L is closed under matrix addition and multiplication. We know that matrix
multiplication and addition are bilinear. Furthermore, it is obvious that [a,a] = a® —a® = 0.
Now we need to show the Jacobi identity holds. Let a,b,c € L.

la, [b, c]] + [b, [c, a]] + [c, [a, b]] = a(be — be) — (be — ¢b)a + b(ca — ac)
— (ca — ac)b + c(ab — ba) — (ab — ba)c
= abc — acb — bea + cba + bea — bac

— cab + acb + cab — cba — abe + bac
=0

Proposition 7.35 (Exercise 2.14ii). Let A, B be matrices in L where

0 f(z) h(z,y)
L=4¢10 0 gy |:f(z)e€R[z],g(y) € Ry, h(z,y) € Rlz,y]
0 0 0
Then
0 0 fags— fBYa
A,Bl={0 0 0
0 0 0
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thus

0 0 fags— fBga
L' =span{|0 0 0 : fa, [ € R[7], 94,98 € Rlyl}
0 0 0
Proof. Let
0 fa ha 0 fs hs
A=10 0 ga B=|0 0 gz
0 0 O 0 0 O
Then we compute [A, B as
0 0 fags 0 0 fBga 0 0
[A,B]=AB-BA={00 0 |-{oo0o o |=[(0o0 0
0 0 0 0 0 0 0 0 0
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8 Chapter 3 Exercises

Proposition 8.1 (Page 21, from 3.2.1). Let L be a 3-dimensional Lie algebra over F' with
L' C Z(L) and L' of dimension one. Let f,g € L such that [f,g] # 0. Then let z = [f,g].
Then f, g,z are linearly independent, and thus form a basis for L.

Proof. Supose af +bg+cz = 0 for some a,b,c € F. Then for all x € L, [af +bg+cz,x] =0,
so alf,x] + blg,z] + ¢[z,2] = 0. Since z € L' C Z(L), we know that [z,2] = 0. Thus
a[f,z]+b[g,z] = 0. In particular, this is true for z = f, so a[f, f]+b[g, f] = 0 so blg, f] =0,
Since [f, g] # 0 by hypothesis, we conclude that b = 0. Likewise, when we set z = g, we see
that a[f, g] = 0, so a = 0. Then returning to the original equation, we see that ¢z = 0, which
implies that ¢ = 0 since z # 0 by hypothesis. Thus a = b = ¢ = 0, so f, g,z are linearly
independent and form a basis for L. n

Proposition 8.2 (Exercise 3.1). Let V = span{vy,...vs} be a vector space and let ¢ : V —
V' be a linear map. let L =V @ span{x} = span{vy,...v,,x} and define a bracket

]:LxL—L
as the bilinear map defined by
Vi, 5] =0 [z,2] =0  [z,v;] = P(v;)
Then L is a Lie algebra under this bracket with dim L' = rank ¢.

Proof. We know that since [y,y] = 0 for all y € L that the bracket is antisymmetric, as
shown in pages 1-2 of Erdmann and Wildon. We just need to show that the Jacobi identity
holds for any three basis elements. If any two are in the span of z, then all brackets will be
zero, and if all are in V', then the brackets will be zero. So we just need to show the identity
holds in the case of x and two basis vectors v;,v; of V.

[, [oi, 03] + [v, [v, 2]] + [vg, [, [vi]] = [, 0] = [vi, p(v;)] + [0, (i) =0 =0+ 0 =0
Thus L is a Lie algebra under this bracket. Furthermore,
L' = span{ly, 2] : y, 2z € L} = span{¢p(v;) : 1 <i < n} = (V)
Thus dim L' = dim ¢(V'), and rank ¢ = dim ¢(V") by definition. O

Proposition 8.3 (Exercise 3.2). Let L, L, be 3-dimensional Lie algebras over C with re-
spective bases {x1,y1,21} and {xa,ys2, 22} where LI = span{yi,z1} and L, = span{ys, 2o}
and adxy : LI, - L! and ad x5 : L}, — L are diagonalisable with matrices

ad 2] = (é 2) fad 5] — <é 2)

with respect to the aforementioned bases, where u,v € C with u,v # 0. Ifv=wu orv=u"
then L, =2 L,.

1
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Proof. Note that Erdmann and Wildon prove in 3.2.3 that L, L! are abelian. From the
matrices [ad z1] and [ad x3] we know that

[z1, 1] = [z2,92] = 12
[Ih Zl] =uz ['r27 22] = Vzg
[?/1, 21] =0 [?/2, 22] =

Suppose that © = v. We define the linear map ¢ : L, — L, by

P(x1) = 2
o(11) = y2
P(21) = 22

Since ¢ maps a basis to a basis, it is bijective. We need to show that ¢ also preserves
brackets. Thus we compute how the brackets interact with ¢ as follows:

o([r1,31]) = d(y1) = Y2 = [12,92] = [d(21), d(y1)]
o([z1, 21]) (uz1) = uzy = v22 = [T, 2] = [P(21), B(22)]
P([y1,21]) = ¢(0) = 0 = [ya, 22] = [d(11), P(22)]

Thus ¢ is an isomorphism of Lie algebras. Now suppose that v = u~!. We define a linear
map ¢ : L, — L, by

|
<

U(z1) = uzy
V(y1) = 22
7/J(Zl) = Y2

Since uxs is just a scalar multiple of o, {uxs, 22,92} is a basis for L,, so 1) maps a basis
to a basis, so it is a bijection. We need to show that it also preserves brackets. Note that

To = up(xy).

([, m]) = () = 20 = uu" 20 = ulxs, 2] = ulu™"P(x1), ()] = [(21), 9 (y1)]
U([x1, 21]) = Y(uz) = up(z1) = uys = ufwe, yo] = ufu"(x1),9(21)] = W(a1), ¥ (21)]
V([y1, 21]) = ¥(0) = 0 = [29,y2] = [¥(11), ¥ (21)]

Thus v is an isomorphism of Lie algebras. O]

Proposition 8.4 (Exercise 3.2). Let L, L, be 3-dimensional Lie algebras over C with re-
spective bases {x1,y1, 21} and {xa,y2, 22 where L = span{y,, z1} and L) = span{ys, 22} and
adzy : LI, — L, and adxy : L, — L! are diagonalisable with matrices

ad 2] = (é 2) fad 5] — ((1) 2)

with respect to the aforementioned bases, where u,v € C with u,v # 0. If L, = L,, then
v=0orv=ul
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Proof. Suppose ¢ : L, — L, is an isomorphism. By Exercise 2.8a, when restricted to L/,
¢: L, — L is still an isomorphism. Since ¢ is onto, one of the basis elements of L, must
map to a linear combination that has a non-zero scalar for x, and since ¢(L!) = L’ that
basis element must be x;. In particular, it must be the case that ¢(x;) = axy + w for some
non-zer a € C and some w € L.

Now let ¢t € L!,. We can compute

[6(21), 6(1)] = ¢([21,t]) = ¢ 0 ad 1 (1)

[0(21), 0(1)] = laza + w, (t)] = alwe, ¢(t)] + [w, §(1)] = alza, ¢(1)] + 0 = aadx; 0 G(1)
Note that the [w, ¢(t)] term is zero because w, ¢(t) € L! and L is abelian as shown in Lemma
3.3a of Erdmann and Wildon. From this we see that ¢oad x; = aad x90¢ = ad(azy)o¢. Let

[¢] denote the matrix of ¢. Since ¢ a bijection, it is invertible, so the matrix [¢] is invertible.
As shown in 16.1i, the matrix of a composition is the product of the matrices, so

(¢ o ad xq] = [¢][ad z4]
[ad(ax2) o ¢] = [ad(az2)][¢]

Since the maps ¢ o ad z; and ad(azs) o ¢ are equal, their matrices are equal, so

[¢ o ad x1] = [ad(axs) o @)
— [¢lad 2] = [ad(az2)][¢]

= [¢][ad 24][¢] " = [ad(az2)]

Thus the matrices for adz; : L, — L, and ad(axs) : L, — L, are similar, so they are
similar as linear maps. In particular, this means that they have the same eigenvalues. The
eigenvalues for adx; are {1,u} and the eigenvalues for ad(azy) are {a,av}, so we have
{1,u} = {a,av}. Thus either a =1 and u = v, or @ = v and v = u~'. This completes the
proof, since we have shown that u = v or u = v~ O

Proposition 8.5 (Exercise 3.3i). Let

1 0 O
S=101 0
0 0 —1
Then glg(3,C) = sl(2,C).
Proof. Let z € glg(3,C). Then 2!'S = —Sz, so
0 a b
r=1|—-a 0 c
b ¢ O

0 1
e=1|-1 0
0 O

0

0
0



where the bracket products compute to

e, fl=g [f.gl=e e, gl=Ff

which is clearly isomorphic to the sl(2, C) by mapping this basis {e, f, g} to the basis {e, f, g}
described in Exercise 1.12.

Alternately, even without this explicit isomorphism, we can deduce this isomorphism
from the theorem that there is only one Lie algebra over C with dim L' = 3. O

Proposition 8.6 (Exercise 3.3ii). Let L b e the complex matrixz algebra spanned by

U= V:€13 W:€23

O O <+
o O
S O O

for some fized t,u,v € C. Then in the notation of 3.2.3, L is isomorphic to L, where
1-v”

xr =
Proof. We can compute the brackets

U, V] = (1 —0)V
U, W] = (u— v)W[V, W] =0

Thus L' has basis V, W so dim L' = 2. Furthermore, the map adU : L' — L’ is diagonalisable,

with matrix
1—w 0
Mg = ( 0 u-— v)

Let Uy = (1 —v)"'U. Then U,, V,W is still a basis for L, and now we get the bracket
products

U, V] =[1 =)' U V] =1 -0) U, V]=V

[Us, W] = (1 — v)" LU, W] = (?:Z) W

1 0
Mad Uy — (0 u—v)
1—v

Thus in the notation of 3.2.3, we have that L is isomorphic to L, with z = *=2. O

1—v

so the matrix of U, is

Proposition 8.7 (Exercise 3.3iii). Let L be the complex matriz Lie algebra

where a,b,c € C

o O OO
o O O e
oo o o
o O OO

Then L is isomorphic to the Heisenberg algebra.
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Proof. First we show that L’ is one-dimensional. Let

0 a b0 0 d e 0
10 0 ¢ O {00 f O
A= 0000 B = 0000
0000 00 00
Then we compute [A, B].
0 0 af—cd O
0 0 0 0
[A,B] = AB — BA = 00 0 0
0 0 0 0
so L' is one-dimensional, since
0010
0000
¢= 0000
0000

is a basis for L'. Then we can see that C'is in Z(L) and thus L' C Z(L) becasuse [4,C] =0
and A is a general matrix from L. Thus L is a three dimensional Lie algebra with dim L' = 1
and L' C Z(L), so it is the Heisenberg Algebra. O

Proposition 8.8 (Exercise 3.3iv). Let L be the complex matriz Lie algebra

0 0 a b
L= 8 8 8 S where a,b,c € C
0000
Then L is abelian.
Proof. Let
0 0 a b 0 0 d e
2=looool 2=loooo
0000 0000
Then we compute [A, B] = 0. Thus L is abelian. O

Proposition 8.9 (Exercise 3.4). Let L be a vector space over F with basis vy, vy and bilinear
operator [,] : L x L — L with [u,u] = 0 for w € L. Then the Jacobi identity holds for this
bilinear operator, and so L is a Lie algebra with this bracket.
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Proof. First note that since [u,u] = 0 for all u € L, it follows that the bracket is anti-
commutative (see page 1 of Erdmann and Wildon for proof). Let z,y,z € L. There are
two possibilities: x,y are linearly independent or they are not. If they are not linearly
independent, then x = Ay for some A\ € F. Then

[, [y, 2] + [y, [z, 2]] + [z, [, 0]] = M, [y, 2]] + [y, [2, AYl] + 2, [Ay, o]
= Ah/? [y7 ZH - )‘[yv [yv Z]] +0
=0

where the third term goes to zero because [y, y] = 0. If z,y are linearly independent, then
they form a basis for L. Then we can write z = ax + by for some a,b € F. Then

[z, [y, 2]l + [y, [z, 2] + [z, [, 9] = [z, aly, z]] + [y, bly, =]] + [az, [z, y]] + [by, [z, y]]

Yy Yy
1+ 0ly, [y, 2] + alz, [z, y]] + bly, [z, y]]
Z, [y7 'TH - CL[.T, [yv ZL‘]] + b[?J? [y7 .Q?H - b[y7 [ya x

e
=
8

Proposition 8.10 (Exercise 3.5). There exists h € sl(2,R) such that ad h is diagonalisable.

Proof. Let
01 00 1 0
o) =) =60
This is a basis for sl(2,R). The bracket products are
[h.e] =2e¢  [h,fl==2f [h,h]=0

so the matrix of ad h with respect to the basis e, f, h is

2 0 0
Mayp=10 =2 0
0 0 0
which is clearly a diagonal matrix. Thus ad h is diagonalisable. O]

Proposition 8.11 (Exercise 3.5). There is no x € R3 with x # 0 such that ad x is diago-
nalisable.

Proof. Let u,v,w be a basis for R3 and suppose that there is an z # 0 such that adz is
diagonalisable. Then for some a,b,c € R,

T X u=au

xXv=bv

T X W= cw
But if x # 0, then x x u is orthogonal to u, so x X u cannot be collinear with « unless x = 0

or v = 0. But z # 0 by hypothesis and u # 0 since u is part of a basis. Thus no such z
exists. [l
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Proposition 8.12 (Exercise 3.5). Let Ly, Ly be Lie algebras over F. If ¢ : Ly — Ly is an
isomorphism and x € Ly such that ad x diagonlisable, then ad ¢(x) is diagonlisable.

Proof. Let = {v;}!_; be a basis for L; so that ad x is diagonlisable with respect to 5. Then
ad x(v;) = [x;,v;] = \w; for A; € F. Then ¢(f) is a basis for Lo, and

ad ¢(z)(d(vi)) = [9(x), p(vi)] = ¢([z, vi]) = d(Aivi) = Aigp(vi)
so ad ¢(z) is diagonlisable with respect to ¢(/3). O
Proposition 8.13 (Exercise 3.5). sl(2,R) % R3,

If ¢ : s1(2,R) — R3 were an isomorphism, then ad ¢(h) would be diagonlisable. However,
there is no z € R3 with ad z diagonlisable. Thus there is no such isomorphism ¢.

Proposition 8.14 (Exercise 3.7). Let L be a non-abelian Lie algebra. Then
dim Z(L) < dim L — 2.

Proof. Clearly it is impossible for dim Z(L) to be greater than or equal to dim L, since Z(L)
is a proper ideal of L. So, to prove our claim, all we need to do is rule out the possibility
that dim Z(L) = dim L — 1.

Let n = dim L. Suppose that dim Z(L) = n — 1. Then we have a basis {v1,vq,...v,-1}
for Z(L). We can extend this to a basis of L by appending the vector u € L, so we have a
basis {vy,vs,...v,_1,u} for L. Then for all 1 < i <n, [v;,u] = 0 since v; € Z(L), and for
all 1 <i,j <mn, [v;,v;] = 0. Thus all bracket products of basis elements of L are zero, so L
is abelian. This contradicts our hypothesis that L is non-abelian, so we conclude that it is
impossible for dim Z(L) = dim L — 1. O

Proposition 8.15 (Exercise 3.91). Let L be a Lie algebra with an ideal I and subalgebra S
such that L =S@ 1. Let 0 : S — gl(I) be defined by 0(s)(z) = [s,x]. Then 0 is a Lie algebra

homomorphism from S into Der I.
Proof. Bilinearity of # follows from bilinearity of the bracket on L:
0(s)(ax +b) = [s,ax + b] = a[s,x] + [s,y] = ab(s)(z) + 0(s)(y)
We claim that € preserves the bracktes on S and gl(/), that is, for s,t € S, 0([s,t]) =
[0(s),0(t)]. Let x € I. Then
0([s, t])(z) = [[s,t], 2]
= _[ [ S,
= [s, [t,z]] + [t, [z, s]] by Jacobi
= [s, [t 2]] = [t [
= (0(s) 0 0(t))(x) — (0(£) 0 (s))(x)
= [0(s),0(2)](x)

Thus 6 is a Lie algebra homomorphism. We also claim that imf C Der I. Let s € S. Then
for x,y € I,

0(s)[z,yl = [s, [z, 9]] = =l [y, sl = [y, [s, 2]] = [, [s, yl] + [[s, 2], y] = [, 0(s) (y)] + [6(s)(2), Y]
Thus 6(s) is a derivation of I, so im# C Der I. O
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Proposition 8.16 (Exercise 3.9ii). Let S, I be Lie algebras over F and let 6 : S — Der I be
a Lie algebra homomorphism. We equip the vector space S @ I with the bracket
[(s1,21), (82, 22)] = ([s1, 82], [1, 2] + O(s1)22 — O(52)71)
We claim that S @& I is a Lie algebra under this bracket.
Proof. First we show that this bracket is bilinear. Let a,b € F' and let (s1, 1), (S2,x2), (s3,23) €
Sel.
la(s1, 1) + b(s9, x2), (s3,23)] = [(as1 + bsa, axy + bxs), (s3,23)]
= ([a51 + bsa, s3],

l[axy + bxg, x3) + O(as; + bsse)(x3) — 0(s3)(axy + bxg))
(als1, s3] + s, s3],

alzy, x3) + bz, 3] + ab(s1)xs + bO(s9)xs — ab(s3)x; — 69(53)353)
= a([s1, 83, [T1, 23] — O(s1)xs — O(s3)x1)

b([s2, s3], [x1, x3] + O(s2)x3 — O(s3) 2

= a[(s1, 1), (s3,23)] + b[(s2, 72), (53, 3)]

Thus the bracket is linear in the first entry. Now we show linearity of the bracket in the
second entry.

[(s1,21), a(s2, ) + b(s3,x3)] = [(s1,21), (ase + bs3, axy + bxs)]
([51, ass + bssl, [z1, axe + bxs] + 0(s1)(axy + bxs) — O(ass + bs3)x1)
= (a[sl, So] + b[s1, s3],

a[z1, To] + blz1, 23] + ab(s1)zs + bO(s1)xs — ab(s2)z1 — bO(s3)x1)
= a([s1, 2], [z1, x2] + 0(s1)22 — O(52)71)

+ b([s1, s3], [x1, x3] + O(s1)x3 — O(83)71)
= a[(s1, 1), (s2,22)] + b[(s1,21), (53, 23)]

Thus the bracket is linear in the second entry. Now we show that the bracket of something
with itself is zero.

[(s1,21), (s1,21)] = ([51, 81, [x1, 21] + O(s1) 21 — O(51)71) = (0,0)

[ am too lazy to prove that the Jacobi identity holds for this Lie algebra, because it’s very
technical and boring. O

Proposition 8.17 (Exercise 3.9ii). In the construction in the above proposition, the bracket
on S ® I is a semidirect product of I by S.

Proof. To show: {0} @ I is an ideal of S @ I and S @ {0} is a subalgebra of S @ I. Let
(51,0), (s52,0) € S @ {0}. Then

[(31’ 0), (s2, 0)] = ([517 32]7 [O’ O] +0(s1)0 — 0(s2)0) = ([317 82]’ 0)
Thus S @ {0} is a subalgebra of S @& I. Let (s1,21) € S@® I, and (0,23) € I. Then
[(81,.’131), (0, 1’2)] = ([81, O], [1’1, ]72] + 9(51)1’2 — 0.1'1) = (0, [.’El,Z’Q] + 9(81).’132)
Thus I @ {0} is an ideal of S @ I. O
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9 Chapter 4 Exercises

Proposition 9.1 (Exercise on page 31, section 4.2). Let L be a Lie algebra. Then L™ C LF.
As a consequence, every nilpotent algebra is solvable.

Proof. This is true for n = 1 since L") = L' = L’. Suppose that L(™ C L™ for some n € N.
Then

L0 = (L0, £00) = span{[s, 5] 2,y € LV} € span{[z 3] : 0,y € L7)
L' =[L,L"] = span{[z,y] : x € L,y € L"}
Since L™ C L,

L™ C span{[z,y] : x,y € L"} C span{[z,y] : v € L,y € L"} C L™+

Thus by induction, L*) C L* for all k € N. This implies that every nilpotent algebra is
solvable, because if L* = 0, then L® C LF=0so L*) =0. O

Proposition 9.2 (Exercise 4.1). Let ¢ : Ly — Lo be an onto homomorphism. Then
o(LY) = L.
Proof. The statement is true for £ = 1 as proved in Exercise 2.8a. Suppose the statement is
true for £ = n. We will show that this implies that it is true for £ =n + 1.
S(LSY = p(ILY, L))

= ¢(span{[z,y] : z,y € L{"}

= span{¢([z,y]) : z,y € L}

= span{[¢(x), ¢(y)] : v,y € L}

= span{[w, z] : w, z € Lé")} since ¢ is onto
= 5", L")
_ Lgn+1)
Thus by induction the statement is true for all k£ € N. m

Definition 9.3 (definition for Exercise 4.2). sp(2k, C) = glg(2k, C) where S is the matriz

0 I
—1I; 0

Proposition 9.4 (Exercise 4.2). For x € gl(2k,C), x € sp(2k,C) if and only if x is of the

form
m.p
q —m'

for square k X k matrices p,q, m where p,q are symmetric.
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Proof. Suppose that = € gl(2k, C) is of the proposed form. Then
oS mt  q 0 Ip) _ (—q m!
p —m) \—1I O m p
(0 =L\ (m p \_ [—q m
_Sx_(fk 0>(q —mt)_<m p

Thus 2'S = —Sz. Now suppose that z €( 2k, C). Then

_fa b
"=\ d
for some a,b,¢,d € gl(k,C). We know that z'S = —Sx, so
at 0 I\ (0 —I;\[a b
bt dt _[k 0 N Ik 0 c d
—cta\ _ [—c —d
—dt ) \a b
Thus ¢ = ¢',b =0, and d = —a’. Thus z is of the desired form. O

Proposition 9.5 (Exercise 4.3). Let L be a solvable Lie algebra. Then ad L is a solvable
subalgebra of gl(L).

Proof. We know that ad : L — gl(L) is a homomorphism, so ad L is a subalgebra of gl(L).
By Lemma 4.4a, every homomorphic image of L is solvable, so ad L is solvable. O]

Proposition 9.6 (Exercise 4.3). If L is Lie algebra such that ad L is a solvable Lie subalgebra
of gl(L), then L is solvable.

Proof. We know that kerad = Z(L), by the First Isomorphism Theorem, L/Z(L) = ad L.
Since Z(L)" =0, Z(L) is solvable, and by hypothesis ad L is solvable, so L/Z(L) is solvable.
Then Z(L) is an ideal of L with Z(L) and L/Z(L) solvable, so by Lemma 4.4b, L is solvable.

[

Lemma 9.7 (for Exercise 4.3). Let ¢ : Ly — Ly be an onto homomorphism. Then
¢(LF) = L.

Proof. We know that ¢(L;) = Ly and ¢(L}) = L}, by Exercise 2.8a. Suppose that ¢(L}) = L%
for some n. Then
S(Ly™) = p(span{[z,y] - v € L1,y € L}})
= span{o([z,y]) : x € L1,y € LT}

= span{[é(z), d(y)] 1z € Ly, y € L7}
= span{[w, 2| : L € Ly, 2 € L}}
= Lyt

Thus by induction, ¢(LY) = L% for all k € N, O
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Lemma 9.8 (for Exercise 4.3). Let L be a nilpotent Lie algebra, and let ¢ : L — M be a
homomorphism. Then ¢(L) is a nilpotent subalgebra of M.

Proof. We know from Exercise 1.6 that ¢(L) is a subalgebra of M. Since L is nilpotent,
L¥ = 0 for some k. Then by the previous lemma, ¢(L¥) = ¢(L)* = 0, so ¢(L) is nilpotent. [

Proposition 9.9 (Exercise 4.3). If L is nilpotent, then ad L is a nilpotent subalgebra of
gl(L).

Proof. Let m: L — L/Z(L) be defined by m(x) = x + Z(L). This is an onto homomorphism
by Exercise 2.3ii. Thus since L is nilpotent, ¢(L) = L/Z(L) is nilpotent. By the 1st
Isomorphism Theorem, L/kerad = L/Z(L) = ad L so ad L is nilpotent. O

Proposition 9.10 (Exercise 4.3). If ad L is a nilpotent subalgebra of gl(L), then L is nilpo-
tent.

Proof. We know that ad : L — gl(L) is a homomorphism, with kerad = Z(L). By the
st Isomorphism Theorem, L/kerad = L/Z(L) = ad L. Thus L/Z(L) is nilpotent, so by
Lemma 4.9b, L is nilpotent. O]

Proposition 9.11 (Exercise 4.4). Let L = n(n, F). Then L* has a basis consisting of e;;
where i < j—k. Thus L is nilpotent. Furthermore, the smallest k such that L* = 0 is k = n.

Proof. This is true for £ = 0 by definition of n(n, F'). Suppose it is true for some k > 0.
Then

LFL = (L, I}
= span{[z,y] : v € L,y € L*}

span{[e;j, eq) 1 7 < j,a+k < b}

= span{d;ja€ip — dipeqj 1 @ < j,a+k < b}
0 j£ai#b

€il J=a,iF#b

—ey; j#a,i=>b

€ii — €aa J =01 FDb

5ja€ib - 5¢b€aj =

The fourth possibility never happens since we know that ¢+ < j. The first case contributes
nothing to the span. In the second case, we have e;, where it < j =a <b—Fksoi <b—k.
Likewise in the third case, we have —e,; where a +k < b= j so a < j — k. Thus

LM = span{e;; 1i < j — k}
So by induction this is true for all k£ € N.

Now we show that n(n, F') is nilpotent. Let k = n. Then LF has a basis e;; where
i < j —n, but this is an empty set, since j < n and ¢ > 1. Thus L* = 0. To see that n is
the smallest such k, suppose that k& < n. Then L* has a basis of e;; with i < j — k and if
k < n this is not empty. O
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Proposition 9.12 (Exercise 4.51). b(n, F)) = n(n, F')
Proof.

b(n, F') = span{eq : a < b}
b(n, F)" = span{e;j, en]) : 1 < j, k <1}
= span{d;ze; — Ouerj 11 < j, k <1}
0 j#ki#I
eil j=ki#l
—erj jFki=1
ei — e J=ki#l

5jkeil - (5ilekj =

In the fourth case, t < j =k <[l =14,s0i=j =k =1, so this bracket product turns out to
be e; — e; = 0, so it contributes nothing to the span.

In the second case, we get e;; where ¢ < j =k <[l and i # [, so ¢ < [. In the third case,
we have —ey; where k <[ =17 < jand k # j so k < j. Thus all of the bracket products in
b(n, F') are of the form +e;; where ¢ < j. Thus

b(n, F) = span{e;; : i < j} =n(n, F)

Proposition 9.13 (Exercise 4.5ii). Let L = b(n, F). Then as basis for L™ is
e i<j—2""}

Proof. For k = 1 this is true by 4.5¢. Suppose that it is true for some m > 1. Then
L™ = gpan{e;; 1 i < j — 2¥71}. Then

Lm+1) — [L(m)’ L(m)]
= span{|e;;, ex] 11 < j — Ml g <[ —2m1)

= span{d;ie; — dyex; 11 < j — 2mt k<l —2m1)
0 jAkT#£I
€il J=ki#l
—egj JF k=1
ei —exx J=k,i#l

5jkez’l - 5il6kj =

Since m > 1, 21 > 0, so i < j — 2™~ implies that ¢ < j. This rules out the fourth case,
since in the fourth case i = j = k = [. Thus in both the first and fourth cases, the the
brackets do not contribute to the span. In the second case,

i<j—2"! —= 42l j=k< 2!
= 1 +2" <
= i <[-=2"
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And in the third case,
E<l—-2"1 — k4+2mi<]i=i<j—2mt
== k<j-—2"
Thus L™V is spanned by matrices of the form e;; where ¢ < j —2™~!. Thus
L™ = span{e;; i < j — 2™}
So by induction, the proposition is true for all £ € N. O

Proposition 9.14 (Exercise 4.5iii). L = b(n, F') is solvable, and the smallets k such that
L®) = 0 is the smallest integer k satisfying k > logy(n — 1) + 1.

Proof. First we show that if k > logy(n — 1) + 1, then L®) = 0. If k satisfies this inequality,
then

k—1>logy(n—1) = 28'>n—-1 = 1+2"'>n

Let e;; be a basis element of L), Then 1 <4 < j—2*~1 which implies 1+2%~! < n. However,
the above just showed that 1+2%~! > n, so there can be no 7, j satisfying 1 < i < j—2F"1 < n.
Thus there are no basis elements of L*), so L*) = 0, so L is solvable.

Now suppose that k£ < log,(n — 1) + 1. Then

k—1<logy(n—1) = 28 <n—1
— 1421 <p
Soifi=1and j =1+ 2! then
1+t <i+ 2 <j<n+2Mt = 1<i<j-2M"<n
So if k < logy(n — 1) + 1, then L™ has a non-empty basis containing e;; where 1 = 1,5 =
1 + 2F=1. Thus the proposed value for k is a minimum to get L®*) = 0. O]

Proposition 9.15 (Exercise 4.6). Let L be a semisimple Lie algebra. Then L has no non-
zero abelian ideals.

Proof. Let I be an abelian ideal of L. Then I’ = 0, so [ is solvable. Since L has no non-zero
solvable ideals, I = 0. Thus all abelian ideals of L are the zero ideal, so L has no non-zero
abelian ideals. O]

Proposition 9.16 (Exercise 4.5iv). If n > 2, then L = b(n, F') is not nilpotent.
Proof. We know that L' = n(n, F). We compute L(®):
L® =L, L

= span{|e;;, ex] 1 @ < j, k <1}

= span{d;ie; — duex; 1 1 < j, k <}
0 JF#kyi#l
€il J=k,i#l
—ey; jE k=1
i —epp J=Fk,iF#l

5jk€iz - 5il€kj =
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In the first cases, nothing is contributed to the span. The fourth case can never happen,
since it would imply j = k <[ =1 < j which means j < j, an impossibility. In the second
case, we have e; where ¢ < j = k < [ so i < [, and in the third case we have —e;; where
kE<l=1<js0k<j.

Thus L® is the span of matrices e;; with 7 < j, which is n(n, F). Thus L*) = n(n, F)
for all £ € N, so L is not nilpotent. O

Proposition 9.17 (Exercise 4.6). Let L be a Lie algebra with no non-zero abelian ideals.
Then L 1s semisimple.

Proof. Let I be a solvable ideal of L. Then I®*) = 0 for some k. Let m be the minimum of
all such k, so 1™ = 0 but 1Y £ 0. Then I~V is an abelian ideal of L, so I(™~Y = 0.
So we have a contradiction, that 7(™™1) = 0 and I™~Y #£ 0. Thus we conclude that L has
no solvable ideals. O]

Lemma 9.18 (Exercise 4.7). Let I C sl(n,C) be an ideal with e;; € I for some i # j. Then
€jj — €j; € 1.

PTOOf. Since Iis an ideal, [6,’j7 eji] = 5jjeii — 5“-6”' = € — €55 el O
Lemma 9.19 (Exercise 4.7). Let I C sl(n,C) be an ideal with e;; — ej; € I for some i # j.
Then €im, emi € I for allm # i and €jp,, epmj € I for all m # j.

Proof. First we compute the bracket of h with some general ey, (with k # 1) which we know
is in [ since [ is an ideal.

[h, exa] = leis, ext] — [eiv1it, exi
= (5z‘k€z‘l - 5il€k:z’) - (5jk€jl - 5jl€k;j)
= Oikeri — Oj€rl — OjkCrr + 0j1Ck
= (0 — Ojk + 0ju — bit)ew
Now we need to enumerate the cases for this coefficient involving several Kronecker deltas.

(

1 i=k 1 =1
-1 j=k —1 i=1

2 i=kj=1

i=k,jAIORj=1Li#k
Sk —Oip+ 0 —0u =20 idtkitljtkjHl
1 j=ki#AlORi=1j#k
—2 i=1j=k

\
So we see that the only time that this coefficient is zero is when i # k,i # [,j # k,j # (.
Now suppose I C sl(n,C) is an ideal containing h = e; — e;;, and m # i. By the previous
computation,

(R, emi] = A1emi

[ha eim] = Xo€im
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where A, Ay € {—2,—1,1,2}, and thus e,,;, €;,, € I. Likewise for m # j, we have

[hy emj] = Azem;

[h, 6jm] = >\3€jm
where A3, Ay € {—2,—1,1,2}, and thus e,,;, e, € 1. O

Lemma 9.20 (Exercise 4.7). Let I C sl(n,C) be an ideal such that e;; —e;; € I. Then
en—exr €1 forall 1 < k,l <n with k # 1.

Proof. We have e;; —e;; € I. By Lemma 9.19, e;x, e;; € I for each k,l # . Then by Lemma
9.18, €;; — exk, ey — €5 € I for each k,[ # i. Then since [ is a vector subspace,

(€ii — exr) + (e — ex) = ey —ep € 1

This gives us each e; — egr, where [, k # . The same process may be used to generate each
ey —exr Where [,k # j. Note that along the way, we genereated each e;; — eg, with ¢ # k, and
finally note that we began by having e;; — e;;, which covers the case where t =, 5 =k. [

Lemma 9.21 (Exercise 4.7). Let I C sl(n,C) be an ideal such that e;; € I ore; —ej; € 1
for some i # j. Then I =sl(n,C).

Proof. If e;; € I, then e; — ej; € I, so either way we may assume e; — e;; € I for some
i # j. Then by Lemma 9.20, I contains all diagonal elements of sl(n,C). Let k& # [ with
1 <k,l <n. Then ex, — ey € I, so by Lemma 9.19, e;; € I. Thus [ contains the standard
basis for sl(n, C), so I =sl(n,C). O

The above lemma gives the significance of the previous three lemmas. This lemma says
that any nonzero ideal of sl(n,C) containing just one of the usual basis elements is the
entirety of sl(n,C). Now we just need to show that any nonzero ideal of sl(n,C) contains
one of these ususal basis elements.

Lemma 9.22 (Exercise 4.7). Let v € sl(n,C) where
V= Z Cijeij + Z d'ei;
i#j i=1

and let k # 1. Then
[exi, [en, v]] = —2c%ep

Proof. We can write v as v = d + n where d is a diagonal matrix and n is a matrix with
zeros on the diagonal. Then by linearity of the bracket,

[exts [ext, V] = e, [exs, d] + [er, n]] = [ex, (e, d]] + [ens, [ers, ]

We claim that [eg, [ex, d]] = 0. By a previous lemma, since d is diagonal, [ex, d] = ey, so
then we have a bracket of ey with a multiple of ey, which will be zero. So [ex, [ex, v]] =
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[ekl, [ekl, n]]

lex, lens 0] = D e [en, 3]

i#]

= Z ¢ lext, Gaer; — Orjeil
i#]

= (Bulen, ex) — Oxjlen, eal)
i#]

= Z cij(dil(élkekj — (5kjekl) - 5kj((sil€kl - 6kleil))
i#j

= Z Cij<5i15lkekj + 0idkjers — Orjluer + dxjokley)
i#j

= Z CZ‘7<(5kh€” + 5klj€ij - 2(5il5kjekl>
(G

At this point, note that since k& # [, we have 6y; = dp; = 0, so we can cross out the e;;
terms.

lext, [ex, v]] = ZCU(—Q@ZCSMBM) =(-2) Zcijéilékjekl
i#] i#]
The only nonzero term of this summation occurs when ¢ = [ and k = j, so
e, [exs, v]] = —2c%ey
O

Lemma 9.23 (Exercise 4.7). Let v € sl(n,C) be a diagonal matriz. We can write v as
S diey (where Y, d =0). Then for k #1,

[U, ekl] = (dk — dl)ekl

Proof.

n n

[v, ep| = Z d'[es, ext] = Z d' (Siwea — Oaeri) = e Z d' (04, — 0il) = ep(d* — d")

=1 =1 =1
[

Lemma 9.24 (Exercise 4.7). Let v € sl(n,C) be a nonzero diagonal matriz. Then there
exist k,l with k # 1 such that [v, ey] = Aey for some A #0 (A € C.)

Proof. Suppose v = Y | d'e;;, where Y " d; = 0 and some d' # 0. Then for k # [, by
previous lemma, [v, e;] = (d¥ — d')ey. Suppose to the contrary that [v, ey] = 0 for all k, 1.
Then d* —d' = 0 = d* = d for all k,l. But then since >_;" ; d; = 0, this implies that
d; = 0 for all 5. But v is nonzero by hypothesis, so we conclude that for some d*,d!, we have
d* —d' # 0, so we reach our desired conclusion. O]
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Recall that 9.21 tells us that any ideal of sl(n, C) that contains just one of the usual basis
elements contains all of sl(n, C). Lemmas 9.22, 9.23, 9.24 allow us to show that any nonzero
ideal of sl(n, C) contains one of the usual basis elements.

Lemma 9.25 (Exercise 4.7). Let I C sl(n,C) be a nonzero ideal. Then e;; € L for some
i .
Proof. Let v € L be nonzero, and write v as

n

v = Z cijeij + Z d'e;;

i#j i=1
Suppose that v is not diagonal, that is, that some ¢ # 0. Then by 9.22,
[ej,-, [Gji, UH = —2Cij€ji el

and since ¢ # 0, we have e;; € I. Now suppose that v is diagonal. Then by 9.24, there
exists ey such that
[ekz, U] = \ew

where A £ 0. Then ey € I. O
Theorem 9.26 (Exercise 4.7). sl(n,C) is a simple Lie algebra for n > 2.

Proof. Let I be a nonzero ideal of sl(n,C). By 9.25, there exists e;; € I with i # j. Then
by 9.21, I = sl(n,C). Thus sl(n,C) has no nonzero proper ideals. O

Definition 9.27. Let A € gl(n, F). Then A;; is the (n — 1) x (n — 1) matriz formed by
deleting the ith row and jth column of A.

Proposition 9.28 (Exercise 4.91). Let A € gl(n, F') and let I,, be the identity matriz for
gl(n, F'), and let A € F. Then det(I, + A\A) is a polynomial in X\ with constant term 1 and
linear term A(tr A).

Proof. We show directly that this is true for n = 2. Let
a b
()

1+ Xa b
e 1+ XM

= (14 Aa)(1+ Ad) + \?be
=1+ Ma +d) + N\*(ad + be)
=1+ A(tr A) + X*(ad + be)

Then

det(I + NA) = det (
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Now we prove the general case by induction. Suppose that for every A € gl(k, F), we know
that det(I + AA) = 1 + A(tr A) + A\*P()\) where P is some irrelevant polynomial in A. Let
B e gl(k+ 1, F) where B = (b;;). Then

1+ /\b11 )\blg
I+ )\B= Abgy 14 Abgo

By Laplacian expansion along the first row,

k+1
det([ + )\B) = (1 + )\bll) det([n -+ )\BH> -+ Z )\blz det([h + )\Bh)

=2

We claim that the summation term contributes nothing to the constant or linear terms of
this polynomial in A. Note that for ¢ # 1, I;; will always have a zero row, so I; + ABjy; has
a row where every entry is divisible by A. One could compute the determinant of Iy; + ABy;
by Laplacian expansion along this row, and every term in the sum would be divisible by A,
so we can conclude that for every 2 < i < k + 1, A|det(l; + ABjy;. Thus each term in the
sum

k+1
> " Abydet(Iy; + ABy;)

1=2

is divisible by A%2. Thus it contributes nothing to the constant or linear term. Finally,
utilizing our inductive hypothesis,

det(I; + AB1y) = 1+ A tr By + A2Py())
Thus

det(I + AB) = (14 Aby1)(det(L1n + ABi1)) + A’ Pa())
= (1+ A1) (L4 A tr Biy + ANPi(N)) + M Py(N)
=1+ A tr By + A2Py(\) + Abyy + A%by1 tr By + A2 Py(A) + A2 Py(A)
=1+ A(tr Byy + biy) + A P3(\)
=1+ MtrB+ NP\

Where Py, P», P; are are all irrelevant polynomials in A. This completes the proof by induc-
tion. ]

Proposition 9.29 (Exercise 4.9iia). Let S € gl(n,C) and let (,) : C* — C" be the complex
bilinear form with matriz S. Let

Gs(n,C)={A € GL(n,C) : (Av, Av) = (v,v) for v e C"}

We claim that Gs(n,C) is a group under usual matriz multiplication.
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Proof. Clearly I, € Gg(n,C), because (I,v,I,v) = (v,v). Thus Gg(n,C) has an iden-
tity. Associativity of matrix multiplication is inherited from GL(n,C). Now we show that
GL(n,C) is contains inverses. Let A € Gg(n,C). Since A € GL(n,C), A™! exists. Also,
(v,v) = (Av, Av), so

(A7, A7) = A% (v,v) = A72(Av, Av) = A2 A% (v,v) = (v,v)

Thus A~ € Gg(n,C). Now we show that Gg(n,C) is closed under matrix multiplication.
Let A, B € Gg(n,C). Then (v,v) = (Av, Av) = (Bv, Bv). Then

(ABv, ABv) = A*(Bv, Bv) = A%(v,v) = (Av, Av) = (v,v)
Thus AB € Gg(n,C). O

Proposition 9.30 (Exercise 4.9iiia). Let G = {A € gl(n,C) : A' = A7}, Then G is a
group under matrix multiplication.

Proof. Clearly I, € G since I! = I, = I}, Associativity is inherited from gl(n,C). For A €
G, we have (A7) = (A")tso A~' € G. For A,B € G, (AB)! = B'A' = B'A™! = (AB)™!
so AB € G. O
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10 Chapter 5 Exercises

Proposition 10.1 (Exercise 5.1i). Let V be a vector space over F, and let A C gl(V') be a
subalgebra. Let A : A — F be a linear map. Let

Vi={v eV :aw) = Aa)v foralla € A}
Then V) is a vector subspace of V.

Proof. V) contains the zero vector since a : V' — V and A : A — F are linear maps, so
a(0) = 0,A(0) =0 = a(0) = A(0)v = 0. Now let v,w € V). Then a(v) = A(a)v and
a(w) = A(a)w for all @ € A. Then by linearity of a and A,
a(v) + a(w) = AMa)v + Aa)w

a(v+w) = Aa)(v+w)

Thus v +w € V). Let v € V,b € F. Then
a(v) = AMa)v = ba(v) = bA\(a)v = a(bv) = A(a)(bv)

Thus bv € V). Thus V), is closed under vector addition and scalar multiplication, so it is a

vector subspace of V. O]

Proposition 10.2 (Exercise 5.1ii). Let A = d(n,F) C gl(n,F) and let V = F™. Let
{e1,...en} be the standard basis for V. For a € A, denote the entries by a*, that is,

at 0
0 a?
a = )
0 a”

Define ¢;: A — F by €;(a) = a'. Then V., =span{e;} andV =V, dV,...dV,, .
Proof. By definition,
Ve, ={veV:a(v) = Aa)v for all a € A}
={v eV a(v) =a"v forall a € A}

Now we compute a(v):

at 0 vl a'v!

) 0 a? v? av?
a(v) = | = )

0 a” " au"™

av a'v
av? atv?
a™u" a‘v™
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The only v for which this holds for all a',a?,...a" is

0
Thus V;, = span{e;}. Since V = span{ej,es...e,},

V = span{e; } @ span{es} ... ® span{e,}
=V ,®V,...eV,,

]

Proposition 10.3 (Exercise 5.2). Let V = F" and let A =b(n, F). Thene; = (1,0,...0) €
V' is an eigenvector of A with eigenvalue 0. Additionally, then linear map \ : A — F defined
by A(a) = 0 is a weight for A and the corresponding weight space is V) = span{e; }.

Proof. Let a € A. Then

0 a1 aiz ... 1 0

thus e; is an eigenvector of A with eigenvalue 0. Let A : A — F be defined by A(a) = 0.
Then

Vi={v eV :a(v) = Aa)v for all a € A}
is non-empty since e; C V). Thus A is a weight for A. Specifically,
Vi={veV:aw)=0foralaec A}

so for v € V), we have

1
v 0
0 a19 Q13 ’U2 1)2@12 + v3a13 + ...+ v"aln 0
CL(U) — 10 0 ass ... ) — v3a23 + U4a24 + ...+ v, | = ]
v" 0
thus v%,v3 ... 0" =0, so V), = span{e; }. O

Definition 10.4. Let V be a vector space and let a € gl(V'). The centraliser of a in gl(V)
18

CL,={z€gl(V):aocx=x0a}

We show in the next lemma that C'L, is a subalgebra of gl(V).
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Lemma 10.5 (Lemma for Exercise 5.3). C'L, is a subalgebra of gl(V').

Proof. We need to show that for z,y € C'L,, [x,y] € CL,.
aolz,y] = a(ry — yr) = axy — ayr = ray — yaxr = rya — yra = [x,yl o a
Thus [z,y] € CL,. O

Proposition 10.6 (Exercise 5.3). The result in 5.3 (page 39) is a specific case of Lemma
5.4.

Proof. Let a,b € gl(V), so a,b : V — V are linear and suppose that a o b = boa. Let
L = CL,. As shown, L is a subalgebra of gl(V'), and by definition, b € L.

Let A = span{a}. We claim that A is an ideal of L. Clearly a € L, since aoa = aoa.
For \ae Aand z € L,

ao[\a,z] = a(Aax — A\rva) = \a*r — azxa) = N awa — aza) =0
[Aa,z] 0 a = ANazxa — zaa) = Nazra — axa) =0
Thus A is an ideal of L since [Aa,z] € A. Now let
W={veV: :x(w)=0foral x € A}

We claim that W = kera. Let v € W. Then x(v) = 0 for all x € A, and since a € A,
a(v) = 0. Thus v € kera, so W C kera. Now let v € kera. Then a(v) = 0, so Aa(v) =0, so
(Aa)(v) =0 so z(v) =0 for all a € A. Thus kera C W.

Thus by Lemma 5.4, W = kera is an L-invariant subspace of V', and since b € L,
b(W) = b(ker a) = ker a. This is precisely the result in 5.3, so that result is a special case of
Lemma 5.4 U

Proposition 10.7 (Exercise on page 40). Let V' be a vector space over F and leta,b:V — V
be linear maps such that aob="boa. Let A € F, and let Vy, = {v € V : a(v) = \v}. Then
b(Vy) C V.

Proof. Suppose that x € b(Vy). Then x = b(Av) for some v € V). Then so bo a(v) = Ab(v)
so a(bv) = A(bv) so x € Vy, so b(Vy) C V). O

Proposition 10.8 (Exercise 5.4i). Let L be a subalgebra of gl(V'). Suppose there is a basis 3
for V' such that every x € L is represented by a strictly upper triangular matriz with respect
to 5. Then L is isomorphic to a subalgebra of n(n, F') and hence L is nilpotent.

Proof. We have the usual map | | : L — n(n, F') where [z] is the matrix of = with respect to
B. | ] maps into n(n, F') by hypothesis. We know that M is linear, that is,

laz +y] = ala] + [y]
[ ] also preserves brackts, because it is linear:

[z, y]] = [vy — yx] = [2][y] — [y][z] = [[z], [y]]
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Thus [ ] is a homomorphism. The kernel of M is the zero map, so by the 1st Isomorphism
Theorem,

L/ker| |2 [L] = L=|[I]

and since [ ] is a homomorphism, [L] is a subalgebra of n(n, F'). Thus L is isomorphic to a
subalgebra of n(n, F'). Since n(n, F') is nilpotent, any subalgebra is also nilpotent, so L is
nilpotent. O

Proposition 10.9 (Exercise 5.4ii). Let L be a subalgebra of gl(V'). Suppose there is a basis
B of V such that all x € L are represented by upper triangular matrices with respect to (.
Then L is isomorphic to a subalgebra of b(n, F') and hence L is solvable.

Proof. Again we use the homomorphism [ | : L — b(n, F'). [ ] maps into b(n, F') by hypoth-
esis. By 5.4, [ ] is a homorphism, so L = [L] and [L] C (n, F) is a subalgebra. Thus L is

isomorphic to a subalgebra of b(n, F'), so L is solvable. ]

Proposition 10.10 (Exercise 5.61). Let L be a Lie algebra and let A C L be a subalgebra.
Define

Np(a)={x € L:[x,a] € A for alla € A}
Then Np(A) is a subalgebra of L and A C Np(A).

Proof. First we show that A C N (A). Let a € A. Since A is a subalgebra, [a,b] € A for all
b € A. Thus by definition of N (A), a € Np(A).

Now we show that N (A) is a subalgebra of L. Suppose y, z € N(A) and let a € A. We
need to show that [[y, z],a] € A. Using the Jacobi identity,

[y, 2], a] = =la, [y, 2]] = [y, [z, al] + [z, [0, Y]

Since 3,z € Ni(4), [,a], [a,] € A Thus [y, [z, al} [z, [a, ] € A, 50 [[y,2],a] € A Thus
ly, z] € NL(A), so Ni(A) is a subalgebra of L. O

Proposition 10.11 (Exercise 5.6i). Let L be a Lie algebra and A C L be a subalgebra. Let
B C L be a subalgebra such that A C B C L and A is an ideal of B. Then B C Np(A).
(Thus NL(A) is the largest subalgebra of L in which A is an ideal.)

Proof. We need to show that for b € B, we have b € N (A). Let b € B,a € A. Since A is
an ideal of B, [a,b] € A, so [b,a] € A. Then by definition of N.(A),b € NL(A). O

Proposition 10.12 (Exercise 5.1ii). Let L = gl(n, C) and let A be the subalgebra of diagonal
matrices. Then N(A) = A.

Proof. We know that A C N (A), so we just need to show that Ny (A) C A. Let x = (z45) C
N1 (A). By the Invariance Lemma, any weight space of A is N (A)-invariant, that is, for any
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weight space V) of A, x(V)) C V). As shown in Exercies 5.1ii, span{e;} is a weight space for
i=1,2,...n. (Recall that {e;} is the standard basis for C".) Thus

T11
T21
(zij)er = : e span{e;} = xp =0for k=23,...n

Tni

Z12

X
(xij)e2 = :22 € span{es} = xpo =0for k=1,3,4,...n

Tn2

and we can do this for each e;. As this demonstrates, x;; = 0 for ¢ # j. Thus z is a diagonal
matrix, so z € A. Thus N(A) C A, so N(A) = A. O

Proposition 10.13 (Exercise 5.7). Let V' be a vector space, and let a,y € gl(V'). Then for
any m > 1 (where m € N),

m m -
ay™ = y™a + Z (k)ym Fay
k=1

where a1 = [a,y] and ap = [ag_1,y] for k > 2.

Proof. This is true for m = 1 because

1
1
ay = ya+ay —ya =ya+la,yl =ya+ » (k>y1kak
k=1

Now suppose that

m m -
ay™ = y™a + Z (k>ym kay,
k=1

for some m > 1. Then

m m
(k ) ym-l-l—kak + (k>ym—kak+1)

M\ 1 = (m
k:)y +1 kak+2(k)y L

k=1
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Consider the far right summation. We can rewrite this by replacing & with k£ — 1.
m m m+1 m
m—k — m+1—k
Z(k)y A+1 Z(k—1>y ak
k=1 k=2

Then we can combine this with the y"a; term, since (73) =1.
m+1 m m m+1 m
m m+1—k _ m m+1—k
rae Y ()= (e () )t
k=2 k=2
m+1 m
— m+1—k
> (1)t
k=1

m+1

Consider the other summation term in our expression for ay™*". We can tack on a k = m+1

term since that term would be zero because ( m ) =0.

m+1
- m m+1—k — - m m-+1—k m m+1—(m+1)
Z(k)y ag Z(k)y ak+(m+1>y A1
k=1 k=1
m+1 m
— m+1—k
> ()t
k=1

Putting this all together, we get
m—+1 m m+1 m
aym—H _ ym+1a + Z (k)ym—&—l—kak + Z (k - 1) ym+1—kak
k=1 k=1
m+1 m m
_ ym+1a+ Z ((k) + <k - 1)) ym—i-l—kak
k=1

By a standard identity for binomial coefficients (Pascal’s Rule),

(G-

Thus
m+1
m m+ 1 m—+1—
=3 (M)
k=1
This completes the induction. O]

Proposition 10.14 (Exercise 5.7). Let V' be a vector space, and let y € gl(V'). Then

)" = Y ()
k=

1
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Proof. Let a € gl(V') and define a; = [a,y] and ay = [ag_1,y] for £ > 2. Then a; = —ad y(a)
and a; = (—1)¥(ady)*(a). By the previous proposition,

. /m
aym_ymaJrZ(k)ym_kak
k=1
m_ m o__ . m m—k _1k d k
yra—ay" == [ )y (=1 (ady)"(a)
=1

el = S0 () )

Thus the map (ad y)™ is
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11 Chapter 6 Exercises

Proposition 11.1 (Exercise 6.1i). Let V' be an n-dimensional vector space where n > 1

and let x : 'V — V be a nilpotent linear map. Then there exists a nonzero v € V such that
z(v) = 0.

Proof. Suppose that there is no nonzero v € V' such that z(v) = 0. Then kerxz = {0}, so z
is one-to-one. Let 8 be some basis for V. Since x is one-to-one, () is linearly independent,
so z(f) is a basis for V. Thus z(V) = V. Then by induction z"(V) =V for all r € N, so z
is not nilpotent. This contradicts the hypothesis, so we conclude that there must be some
nonzero v € V such that z(v) = 0. O

Lemma 11.2 (for Exercise 6.1ii). Let V' be a finite-dimensional vector space and let x : V' —
V' be a nilpotent linear map. Then rankx < dim V.

Proof. By Exercise 6.1i, there exists a non-zero v € V' such that z(v) = 0. Thus dimker z >
0. Thus by the Rank-Nullity Theorem, dimim x = rankx < dim V. [

Lemma 11.3 (for Exercise 6.1ii). Let V' be a I-dimensional vector space and let x : V —V
be a nilpotent linear map. Thus x(v) =0 for allv € V.

Proof. By the previous lemma, rankz < 1 so rankz = 0. Thus dimimz = 0, so z(v) = 0
forallveV. O

Lemma 11.4 (for Exercise 6.1ii). Let V' be an n-dimensional vector space over F where
n>1. Letx :' V — V be a nilpotent linear map. Let U be a subspace of V. Define
z: VU —=V/U by

T(w+U)=x(w)+U

forw+ U € V/U. Then & is a nilpotent linear map. (We refer to T as the map induced by

Proof. One can check that z is linear using the definitions of addition and scalar multipli-
cation in V/U. We show that Z is nilpotent. We know that = is nilpotent, so there exists
r € N such that z"(v) = 0 for all v € V. Then

(w+U)=2"(w)+U=0+U=U
Thus 7 is nilpotent. O

Proposition 11.5 (Exercise 6.1ii). Let V' be an n-dimensional vector space and let v : V —
V' be a nilpotent linear map. Let v € V' such that v # 0 and x(v) = 0. Let U = span{v}.
Define T : V/U — V/U as above. Then there is a basis {vi + U,...v,_1 + U} of V/U such

that the matriz of T in this basis is strictly upper triangular.

Proof. We begin with the case n = 2, so we assume V is 2-dimensional. Let v; be any vector
in V —U. Then v; # 0 and v; € U thus v; + U # U. Thus v; + U is a non-zero element of
V/U, and since V/U is one-dimensional, V/U = span{v; + U}. Since Z is a nilpotent linear
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map from a 1-dimensional vector space to itself, z is the zero map. Thus in any basis its
matrix representation is [z] = (0) which is strictly upper triangular.

Now we proceed by induction on n. We suppose that for any k-dimensional vector space
V', and any nilpotent linear map z : V' — V, there is a basis {v; + U, ... v5_1 + U} of V/U
in which the matrix of Z is upper triangular (where U = span{v} for some v # 0 with
z(v) = 0).

Let W be a (k+1)-dimensional vector space and let y : W — W be a nilpotent linear map.
By Exercise 6.1i, there exists a nonzero w € W such that y(w) = 0. We let B = span{w}.
Then W/B is a k-dimsional vector space, so by inductive hypothesis there is a basis O

Proposition 11.6 (Exercise 6.1ii, Base Case for Induction). Let V' be an 2-dimensional
vector space and let x : V. — V be a nilpotent linear map. Let v € V' such that v # 0 and
x(v) =0. Let U = span{v}. Definez : V/U — V/U as above. Then there is a basis {vi+U}
of V/U such that the matriz of T in this basis is strictly upper triangular.

Proof. Let vy be any vector in V —U. Then v; # 0 and v; € U thus v;+U # U. Thus v; +U
is a non-zero element of V/U, and since V/U is one-dimensional, V//U = span{v; +U}. Since
Z is a nilpotent linear map from a 1-dimensional vector space to itself, Z is the zero map.
Thus in any basis its matrix representation is [x] = (0) which is strictly upper triangular. [

Proposition 11.7 (Exercise 6.1ii, Inductive Step for Induction). Suppose that for every
k-dimensional vector space V' with a nilpotent linear map x : V — V and U = span{v} for
some v € V with x(v) = 0 and v # 0, there is a basis {v1 + U,...,v,1 + U} of V/U in
which [z] is strictly upper triangular. Then let W be a k + 1 dimensional vector space with
y: W — W a nilpotent map with y(w) =0 for some w € W with w # 0 and B = span{w}.
Then there is a basis of W/B in which [y] is strictly upper triangular.

Proof. Let W be such a space. Then W/B is k-dimensional, so there is a basis of W/B in
which [y] is strictly upper triangular. Then by the previous proposition, this basis with w
added gives a basis of W in which [y] is strictly upper triangular. O

Proposition 11.8 (Exercise 6.2ii). Let V' be an n-dimensional complex vector space and let
x:V — V be a linear map. Let v be an eigenvector of x with corresponding eignevalue \.

Let U = span{v}. Define z:V/U — V/U by
T(w+U)=x(w)+U
The map T s linear.
Proof. Let a € C, wy,ws € V.
z(a(wy +U) + (wa + U)) = Z((awy + wy) + U)
x(awy + we) + U
(ax(wy) + z(wq)) + U

=a(z(w) +U) + (x(wg) + U)
= aZ(w; + U) + Z(we + U)



Proposition 11.9 (Exercise 6.2ii). Let V' be an n-dimensional complex vector space and
let © : V. — V be a linear map. Let v be an eigenvector of x and let U = spanwv. Let
z:V/U — V/U be the induced map and let B = {vy + U,...v,_1 + U} be a basis of V/U
such that [Z]g is upper triangular. Then v = {v,v1,...v,_1} 15 a basis of V such that [z], is
upper triangular.

Proof. First we show that 7 is linearly independent. We have the canonical map 7 : V —
V/U by n(w) = w + U. Suppose there are scalars a,a',...a" " € C such that

n—1
av + Z aivi =0
i=1
Then (using Einstein summation notation)
0 = 7m(av + a'v;) = am(v) + a'm(v;)
But 7(v) = 0 so we have

a'm(v;) =0

By hypothesis, {m(v;)}?-]' is a basis for V/U so it is linearly independent. Thus a’ = 0 for
1 =1,2,...n — 1. Returning to the original equation, we now have av = 0. Since v is an
eigenvector, it is not the zero vector, so a = 0. Thus ~ is linearly independent, so it forms a

basis for V. 0

Lemma 11.10. Let V' be an n-dimensional vector space and let x : V' — V be a nilpotent
linear map. Then x™(v) =0 for allv € V.

Proof. By the lemma for Exercise 6.1ii, the rank of x is strictly less than the dimension of
V' (unless V is zero-dimensional), so

dimV > dimz(V) > dim2*(V) > ... > dim 2"(V)

where there are n 4 1 such inequalities. But a string of n + 1 inequalities involving integers
means that dim 2" (v) = 0. O

Proposition 11.11 (Exericse 6.3). Let L be a nilpotent complex Lie algebra. Then every
2-dimensional subalgebra of L is abelian.

Proof. By Engel’s Theorem (Theorem 6.3), for every x € L, the map adz : L — L is
nilpotent. Let V' be a 2-dimensional subalgebra of L. Either V is abelian, or we can choose
a basis {x,y} of V such that [x,y] = z. In the latter case, we know that (ady)? = 0, so

0= [Z/, [yaa:“ = _[y7 [$>y” = —[y,:c] = [x>y]
Thus even if V' is “not abelian,” all the brackets in V' are zero, so V' is abelian. O

Lemma 11.12. Fori,j, k,p € N,
p
> Gidi; = 0y
k=1
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Proof. See Wikipedia. m

(Exercise 6.4)
Erdmann and Wildon define matrices z,y € gl(p, Z,). We equivalently view x and y in terms
of their ijth position as

(2)ij = djir1 + 0iplij

()ij = 6ij(i = 1) = 055(j — 1)

Then the matrix products zy and yx are given by

p
= E TikYkj
k=1

p
= Bkt + Oipb1x) 015 (G — 1)

k=1

j - ]- (Z 6k z+15k] + Z 62p51k5k3>

= (J = 1)(0iz1,5 + 0104p)

p
x)lj = E Yik Ty
k=1

p
=D 0ik(i = 1)(djk41 + Okpdy;
k=1

Z - 1 (Z 5zk5] k1 1 Z 5zk6kp5lj>
= (1 = 1)(0iy1,j + 0ip01j)
Then we can compute [z, y] as
[z, ylij = (vy)i; — (Y2)i5 = (5 — 1) (0ig15 + 0150ip) — (4 — 1)(Siy1,j + Gipdiy)
= (J — 1)(0it15 + dipduj)
= (J = 1)0it1,5 + (J — 9)0ip01;
=041, + (1 — p)dipdy;
= 0it1,5 + 0015

= Zyj

Note that in the last few equalities, the factor j — ¢ becomes 1 since ;11 ; is zero unless
i+ 1=y, and (1 —p) = 1 since the field is Z,. Thus [z,y] = .

Proposition 11.13 (Exericse 6.4). As defined above x,y span a 2-dimensional solvable
subalgebra of gl(p, F).
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Proof. Since [z, y] = x, we know that span{x, y} is closed under brackets, so it is a subalgebra
of gl(p, F). We know that all 2-dimensional Lie algebras are solvable since the non-abelian
2-dimensional Lie algebra has one-dimensional (and hence abelian) derived algebra. ]

Proposition 11.14 (Exercise 6.4). As defined above, the matrices x,y have no common
etgenvector.

Proof. Let v = (v, v2,...v,). Then
v = (Vg, V3. .. Up, V1)

So if v is an eigenvector of x, then

Vg = )\’Ul
V3 = )\’Ug
U] = AU

so NPv; = vy. Thus the eigenvalues of x are the pth roots of unity,

Ae ek E=0,1,...(p—1)}
c {1’ 62772‘/1)’ 647Ti/p’ N }

The eigenvector corresponding to each A is
vy = (1, A2, 0% )
Now we compute the eigenvectors for y.

yv = (0,v9,2v3,...(p — 1)v,)

Eigenvalues of y are the diagonal entries, A € {0,1,2,...(p — 1)}, and the corresponding
eigenvectors are the standard basis vectors for F™. (Recall that F is a field of characteristic

p.)
1))\:6>\:<0,0,...,1,...0,0)

If v is an eigenvector of z, then it has all nonzero entries, but then it could not be an
eigenvector of y. Thus x,y have no common eigenvectors. ]

Because x and y have no common eigenvector, this example demonstrates that the hy-
pothesis that the field be complex in Proposition 6.6 is necessary. If V' = F™ where F'is a
field of characteristic p, then we have shown that L = span{z,y} is a solvable subalgebra of
gl(p, F') = gl(V), and 2,y have no common eigenvector.

Proposition 11.15 (Exercise 6.4). Let x be the matriz defined above. Then xP = I,,, where
I, is the identity matriz.
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Proof. We compute the characteristic equation of x.

-A 1 0 ... 0 0
O —-Xx 1 ... 0 0
0O 0 =X ... 0 0
z— A = ) ) )
0O o0 0 ... =X 1
1 0 0O ... 0 =X\

We compute the determinant of x — Al by expansion by cofactors along the top row. Thank-
fully, all but two of the entries are zero.

-2 1 0 ... O o 1 0 ... 0
0O —-x 1 ... 0 0O —-Xx 1 ... 0
det(z — M) = —Adet | : © | —det | : - :
0o 0 ... =X 1 0o 0 ... =Xx 1
0O 0 ... 0 =X 1 0 ... 0 =X\

The first matrix here is diagonal, so its determinant can be read off as the product along
the diagonal, (—\)P~!. To compute the determinant of the second matrix, we will iteratively
expand along the second column. Notice that when we expand it along the second column,
we get the same matrix, except one dimension smaller, and we multiply by (—1).

o 1 0 ... O o 1 0 ... O
O -x 1 ... 0 0O —-x 1 ... 0
det | : : = —det :
0o 0 ... =x 1 0 0 -2 1
1 0 ... 0 =X 10 ... 0 =X
p—1 p—2

After doing this expansion p — 3 times, we get

0 1 o ... 0

O =X 1 ... 0

. . _3 0 1 _9
det | : : = (—1)P"det <1 _A):(—l)p

0 O -2 1

1 0 0 =X

p—1

Thus the characteristic polynomial of x is

det(x — M) = (=A\)P — (=1)P2 = (=1)PN — (=1)’ = (=1)P(\? —1) =0
= N -1=0

By the Cayley-Hamilton Theorem, every square matrix over a commutative ring satisfies its
own characteristic polynomial. Thus

I, =0 = 2¥ =1,
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The matrices x,y also illustrate that the requirement that the field by complex in the
following proposition (Exercise 6.51) is necessary. Let F' be a field of characteristic p, let
V = F" and let x,y be the matrices above. Let L = span{z,y}. Then as shown above, L
is a solvable subalgebra of gl(V), so all the other hypotheses of 6.51 are satisfied. However,
L' = span{z}, and z is not nilpotent, since 2 = I,. Thus the theorem fails without the
hypothesis that the underlying field by C.

Proposition 11.16 (Exericse 6.51). Let V' be a complex vector space and let L C gl(V') be
a solvable subalgebra. Then every element of L' is nilpotent.

Proof. By Lie’s Theorem (Theorem 6.5), there is a basis 5 of V' in which every element of
L is represented by an upper triangular matrix. For z € L', we can write z as a linear
combination of brackets,

z = ai[iﬁz’, Yil

where a' € C and z;,y; € L. m;,y; have upper triangular matrices in the basis 3, [z;, yi]
has a strictly upper triangular matrix (in ). Thus z has a strictly upper triangular matrix
representation, so it is a nilpotent map. O

Proposition 11.17 (Exercise 6.5ii). Let L be a complex Lie algebra. Then L is solvable if
and only if L' is nilpotent.

Proof. First suppose that L’ is nilpotent. Then L’ is solvable, and so L™ = 0 for some m,
and thus L™+t =0, so L is solvable.

Now we suppose that L is solvale and show that L’ is nilpotent. Using the adjoint
homomorphism ad : L — gl(L), we can see that ad L is a subalgebra of gl(L), and by
Lemma 4.4, ad L is solvable since it is a homomorphic image of L. Thus by Lie’s Theorem
(Theorem 6.5), there is a basis  of L such that every element of ad L is represented by an
upper triangular matrix.

We claim that for z € L'/, adz is nilpotent. If z € L', we can write z as a linear
combination of brackets,

z=a'la, i
where o' € C and x;,v; € L. Then since ad is a homomorphism,
ad z = ad(a'[z;, y;]) = a'[ad 2;, ad y;]

Since ad x;,ad y; have upper triangular matrices in the basis 8, [ad z;, ad y;] has a strictly
upper triangular matrix (in 3). Thus ad z is nilpotent. Thus by Engel’s Theorem (2nd
version), L’ is nilpotent. ]

Proposition 11.18 (Exercise 6.6). Let V' be an n-dimensional complex vector space and let
x,y: V=V be linear maps such that

rolz,y| =[z,ylox
yolz,yl=lz,yloy

Then [z, y] is a nilpotent map.
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Proof. Let L = span{x,y, [x,y]}. We claim that L is a solvable subalgebra of gl(V'). To see
that L is a subalgebra, note that

[z, y] € L
[z,[z,y]] =z o[z,y] — [v,ylox=0€ L
[z, 9l =yole,yl —[z,yloy=0€L
To see that L is solvable, note that L' = span{[z,y|} which is abelian since it is one-

dimensional, so L” = 0.

Since L is a solvable subalgebra of gl(V'), by Lie’s Theorem (Theorem 6.5), there is a
basis of V' in which every element of L is represented by an upper triangular matrix. Let
M, My, M, be the matrices of x,y, and [z, y] respectively. Because M is a homomorphism,

M[%?J] = Mly—yfﬂ - MIMy - MyMz - [Mm My]

As shown in Exercise 4.51, the commutator of two upper triangular matrices is strictly upper
triangular, so since M,, M, are upper triangular, M, , is strictly upper triangular. It is a
standard result that strictly upper triangular matrices are nilpotent, and that a linear map
is nilpotent if and only if its matrix is nilpotent. Thus [z, y] is nilpotent. O
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12 Chapter 7 Exercises

(Exercise 7.1)
1 0 01 0 0
=65 o) =0

e fl=h  [fH=2f  [he=2e

00 0 0 -2 0 0 0 2
[adh]= {0 2 0 lade]={0 0 0 adf]=|—-1 0 0
00 —2 1 0 0 0 00

Proposition 12.1 (Exercise 7.2). Let V be an L-module. Define ¢ : L — gl(V') by ¢(z)(v) =
x-v. Then ¢ is a Lie algebra homomorphism.

Proof. Linearity of ¢ follows immediately from the M2 axiom for L-modules. Let z,y €
LiveV.

]

Proposition 12.2 (Exericise 7.3). Let L be a Lie algebra and let V' be an L-module. Then
V' is irreducible if and only if for any non-zer v € V' the submodule generated by v contains
all elements of V.

Proof. First, suppose that V' is an L-module such that for any non-zero v, the submodule
generated by v is V. We will show that any non-zero submodule of V' is equal to V. Let
W C V be a non-zero submodule. Then there exists some non-zero v € W. Because W is a
submodule, any product of the form

x1 (T (T 0) )

is inside of W. By hypothesis, products of this form span V for any non-zero v € V. Thus
W = V. Thus V has non non-zero proper submodules, so V' is irreducible.

Now suppose that V' is irreducible. Define U to be the submodule generated by v, that
is,

U=span{zy - (za-... (X, v)...) 2, € L}

Then we know that U is a non-zero submodule of V. Since V' is irreducible, this means that
U=V. m
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Proposition 12.3 (Exercise 7.5). Let L be a finite-dimensional Lie algebra. Let ad : L —
gl(L) be the adjoint homomorphism, and define an action of L on itself by

LxL—L z-y=ad(z)(y) = [z,
Then the submodules of L as a module are precisely the ideals of L.
Proof. Let I C L be any subset, and let a € I,z € L. Then

r-a€l < [zr,al el
so I is L-invariant exactly when [ is an ideal. ]

Proposition 12.4 (Exercise 7.61). Let F' be a field and let L =b(n, F') and V = F"™. Then
V' is an L-mocule where the action is

LxV =V (x,v) — zv
that is, multiplying the matrix by a column vector.

Proof. Let a,b € F,v,w € V, and z,y € L. Using standard properties of matrix multiplica-
tion,
(ax + by)v = a(xzv) + b(yv)
z(av + bw) = zav + zbw = a(zv) + b(zxw)
[, y]v = (zy — yx)v = 2(yv) — y(zv)
m

Proposition 12.5 (Exercise 7.6ii). Let F' be a field, and let L = b(n, F),V = F™. Let
{e1,e9,...e,} be the standard basis for F™, and let W, = span{ey, es,...e.}. Then W, is a
submodule of V' (where V' has the same module structure as in part i).

Proof. To show: for x € L,w € W,, we have xw € W,. Let x € L,w € W,. Let z;; be the
tjth entry of o and w; be the ith entry of w. Since x is upper triangular, x;; = 0 for j < ¢
and since w € W,., w; = 0 for r < 7. We know that

n
(zw)i; = Y wijw;
j=1

When i > r, there are two possibilities: j <ror j >r. If j <r, then j <r <iso z;; =0.
If j > r, then w; = 0. Thus when ¢ > r, each term of the summation is zero, so (zw); = 0
for ¢+ < r. Thus zw € W,. O

Proposition 12.6 (Exercise 7.6iii). Let I be a field, let V = F", and let L = b(n, F'). Let
V' be an L-module by applying matrices to column vectors. Then every non-zero submodule
of V' is equal to some W, where

W, = span{ey, eq,...¢,}

(span{ey, e, ...e,} is the standard basis for F™.) Furthermore, each W, is indecomposable,
and if n > 2, then V' is not completely reducible as an L-module.
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Proof. We prove the first assertion by induction on r. The base case is r = 1. We claim that
every 1-dimensional submodule of V' is W, = span{e;}. Let W C V be an 1-dimensional
submodule, so W = span{w} for some nonzero w € V. Let w = (w',w?, ... w"). Let e;; be
the usual matrix basis element. Then since W is a submodule,

enw = (w',0,0,...) €W
epw = (w?0,0,...) €W

erpw = (w",0,0,...) € W

Since w is nonzero, one of w!, w?, . .. is nonzero, so span{e;} € W. Since W is a 1-dimensional

vector space, it must be equal to span{e; }. Thus any 1-dimensional submodule of V" is equal
to Wi.

Now for the inductive step. We suppose that every k-dimensional submodule of V' is equal
to Wy. We will show that this implies that every (k4 1)-dimensional submodule of V' is equal
to Wyy1. Let U be a (k + 1)-dimensional submodule of V. Let U = span{uy, us, ... ugs1}.
Then U" = span{uy, ug, ... u} is a k-dimensional submodule, so by the inductive hypothesis,
U = Wy. Then U = Wy, @ span{ugy1}. Since U is (k + 1)-dimensional, it must be that
Ugy1 & Wi, SO ur,1 has a non-zero entry after the kth entry.

k+1 k42

2 koo o a) One of a",a""* ... a" is nonzero.

1
Upr1 = (a,a”, ... a%a" L.
Then since U is a submodule of V',

_ k1
Crttht1Uprr = (0,...a"7,0,...) €U

— k+2
Ch+1,k+2Uk+1 = UL...a ,0,..) ceU

ekr1ntri1 = (0,...a",0,...) €U

k—i—l’ ak+2 a™

,...a" is nonzero,

Where each time, the product is in span{ex1}. Since one of a
this implies that span{ey 1} € U. Thus

Wii1 = Wy @ spanf{eg 1} = span{ey, ea,...ep, €01} CU

Since U is a (k4 1)-dimensional vector space, it follows that U = Wy;. This completes the
induction.

Now, we show that each W, is indecomposable and if n > 2 then V' is not completely
reducible as an L-module. Asshown, the only submodules of V are Wy, Ws, ... W,_{, W, =V
and we have proper inclusions

WiycWycWscC...cW, 1 CV

Thus no W, can be written as a direct sum of two submodules of V', since any direct sum is
“absorbed,” that is, W, @ Wy = Whax(@p)- If n > 2, then V has at least one nonzero proper
submodule, W7, but no direct sum of submodules is equal to V. O
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Proposition 12.7 (Exercise 7.7). Let L be a Lie algebra, and let V' be an n-dimensional
L-module with a submodule W of dimension m. Then there exists a basis 5 of V' such that
the action of every x € L s represented by a “block matrix” of the form

=y
0 X3
where X1 is a m X m matriz. Furthermore, X1 is the matriz of x restricted to W, and X3
is the matrixz of the action of x on the factor module V/W .

Proof. Let a = {wq,ws, ... w,} be a basis for W. Extend « to a basis of V', and call this
basis .

B ={wi,wa, ... Wy, V1,02, ... 00—}

Let x € L, and let [z]3 be the matrix of z with respect to 5. Then for each ¢ with 1 < i <m,

[7][wils = [z - wilg

Since W is a submodule, = - w; € W. The multiplication [z]s[w;]s just picks off the ith
column of [z]g, so for each column 1,2,...m of [z]s, the column lies in W. By construction
of 3, for any w € W,

[w]g = (a',a?,...a™,0,0,...)

Thus the bottom left block of [z] is zeroes, as was to be shown.
Now consider the matrix [z],. As before, the mutliplication

[2]alwila

picks off the ith column of [z],, so [z - w;], is the ith column of [z],. Since nothing in W has
a nonzero entry past the mth entry, the block X, (of [x]s) does not affect anything when «
is restricted to W. Thus [z], is the upper left block X;.

Now we show that X3 is the matrix of x acting on V/W. When x acts on V/W, it acts
as the map v+ W — x - v+ W, so when z acts on v + W, it ignores the first m entries of
[v]g. Thus only the bottom left block X3 actson V/W. O

Proposition 12.8 (Exercise 7.8). Let L be the Heisenberg algebra over C, that is, L =
span{ f,g,z} with [f,g] = z and [f,z] = [g9,2] = 0. L does not have a faithful finite-
dimensional irreducible representation.

Proof. Let V be a finite-dimensional vector space and let ¢ : L — gl(V') be an irreducible
representation. We will show that ¢ is not faithful. Since z € Z(L), by Lemma 7.14,
¢(2) = My for some A € C. (Iy is the identity transformation on V.) Now we compute the
trace of ¢(z).

tro(z) = tr[o(f), ¢(g)] = 0

Thus A = 0. Thus ¢(z) is the zero map, so ¢ has a nonzero kernel. Thus ¢ is not a faithful
representation. ]
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Proposition 12.9 (Exercise 7.9). Let L be the 2-dimensional complex non-abelian Lie al-
gebra given by L = spanx,y,[r,y] = x. Then we define a linear map ¢ : L — gl(C?)

by

01 -1 1
Then ¢ is a representation of L. Furthermore, ¢ is isomorphic to the adjoint representation
of L on itself.

Proof. To show that ¢ is a representation, we just need to show that it is a homomorphism,
that ¢([z,y]) = [¢(x), ¢(y)]. By routine computations,

ollea) =o0) = (g o)

o(a). 0] = 0()ots) ~ oot = () o)

Now we find an explicit isomorphism between the adjoint representation, ad : L — gl(L),
and ¢. We define 0 : C> — L by

Ole) =2 O(ex) =—x+y

where e; = (1,0),e2 = (0,1) are the standard basis for C>. We need to show that for
ar +by € L,v € C?,

0(p(ax + by)v) = ad(ax + by)0(v)
We only need to show this holds for the basis vectors eq, es.

0(d(ax + by)er) = O(ag(x)er + bd(y)er)
= 0(a(0) +b(—e1))
= —bl(ey)
= —bx
ad(ax + by)f(e1) = [ax + by, ]
= alz, z] + bly, 7|
= —bx
0(¢(ax + by)ez) = O(ad(x)es + bo(y)es)
= 0(ae; + bey)
=(a+b)x
ad(ax + by)0(e2) = [ax + by, H(e2)]
lax + by, —x + 1]
—alz, x] + alz,y] — bly, x] + by, y]
= (a+b)z
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Proposition 12.10 (Exercise 7.11). Let L be a Lie algebra over F, and let ¢ : L — gl(1, F)
be a representation of L. Then ¢(L') = 0.

Proof. If ¢ is the zero map, then clearly ¢(L’) = 0. If ¢ is not the zero map, then the image
of ¢ has dimension at least one. Then since gl(1, F') is one-dimensional, ¢ is onto. Then by
Exercise 2.8a, ¢(L') = gl(1, F) = 0. ]

Proposition 12.11 (Exericse 7.11). Let L be a Lie algebra over F such that L' = L. Then
the only 1-dimensional representation of L is the trivial representation.

Proof. Let ¢ : L — gl(1, F') be a representation. By part (a), ¢(L') = 0. Since L = L', this
implies ¢(L) = ¢(L') = 0. Thus ¢ is the trivial representation. ]

Proposition 12.12 (Exercise 7.11). Let L be a Lie algebra, and let ¢ : L/L" — gl(V') be
a representation. Thend define ¢ : L — gl(V') by () = ¢(x + L'). We claim that ¢ is a
representation, and ¢(L') = 0.

Proof. Let m: L — L/L" be the canonical homomorphism given by 7 (z) = = + L’. Notice
that we have defined ¢ such that ¢ = ¢m, that is, the following diagram commutes.

L—"— L/L
N s
gl(V)

Since 7 and ¢ are both homomorphisms, it follows that ¢ is also a homomorphism, and thus
it is a representation. Now we show that for z € L', ¢(z) = 0.

¢(z) = ¢z + L) = ¢(L') = 0
O

Proposition 12.13 (Exercise 7.11). Let L be a Lie algebra over C, such that L' # L. Then
L has infinitely many non-isomorphic 1-dimensional representations.

Proof. Let span{yi,ys,...yn} be a basis for L' and extend this basis to a basis for L, so that
L = span{y1,ys, ... Yn, T1, T2, ... Ty }. Let a € C. We define a linear map a : L — gl(C) on
the basis elements of L as follows.

for all ¢ € C. We claim that a is a representation. By definition, a is linear. We just need
to check that a preserves the bracket, that is,

a([w, 2]) = [a(w), a(z)]

for all w,z € L. Since [w, z] € L', we know that [w,z] = > " | ¢;y; and thus a(Jw, z]) is the
zero map. On the right hand side, the bracket is in gl(C), which is one dimensional, so it
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must be abelian. Thus both sides of this equation are the zero map for all w, z € L, so they
are equal. Thus a is a representation.

We have shown that for each a € C, there is a representation a : L — gl(C). We claim
that each a € C gives a unique reprepresentation with respect to isomorphism. That is, we
claim that if a,b € C and a # b, then @ is not isomorphic to b.

Suppose there was an isomorphism 6 : C — C. Since 6 is a linear map, 6(c) = Ac for
some A € C. Then since € is an isomorphism,

O(a(z)(c)) = b(x)6(c)
for all z € L,c € C. In particular, this must hold for z = z;.

0(a(x1)(c)) = 0(ac) = Aac
b(z1)0(c) = b0(c) = bAc
= alc = blc

So if there is such an isomorphism 6, then A = 0 or a = b. If A = 0 then 6 is not bijective,
so the only possibility is @ = b. Thus we have proven our claim that if a # b, then a is
not isomorphic to b. To summarize, for each a € C, there is a unique (up to isomorphism)
representation a : L — gl(C), so there are uncountably infinitely many non-isomorphic
1-dimensional representations of L. O

Proposition 12.14 (Exercise 7.12i). Let L be a Lie algebra over F' and let V' be an L-module.
On the dual space V*, define an action on L by

(x-0)(v) = —0(x-v)
forx e LyveV,0 € V*. This action gives V* the structure of an L-module.

Proof. We need to show that the conditions M1, M2, and M3 on page 55 hold. Let x,y €
L,0,yeV*abeF, andveV.

((az +by) - 0)(v) = —0((az + by) - v)
= —b(a(z-v) + by - v))
= —af(x-v) —bO(y - v)
= a(z - 0)(v) + b(y - 0)(v)
= ((az - 0) + b(y - 0))(v)
= (ax+by)-0=a(x-0)+bly-0)

Thus condition M1 is satisfied.

7 (af + bib) () = —(ah + b)) (z - v)
—af(z-v) — bp(x - v)
= a(z - 0)(v) + b(z - ¥)(v)

9)
= (a(z - 0) + bz - ¥))(v)
— z- (a0 + b)) =a(z-0)+b(z-)
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Thus condition M2 is satisfied.

([z, 9] - 0)(v) = =0([z, 4] - v)

=—(y-(z-0))(v)+ (z-(y-0))(v)
=—(y-(z-0)+z-(y-0))(v)
=(@-(y-0)—y-(z-0))(v)
= ([z,y])-0=(z-(y-0)—(y-(x-0))
Thus M3 is satisfied. Thus V* is an L-module with this action. O

Lemma 12.15 (for Exercise 7.12i). Let V be a Lie module for L, and fix a basis § of V. If

forallz € Lyv,w €V, then [x]" = —[x] for z € L.

Proof. Let = {e1,e3,...}. Then since we have this equation for all v,w € V| let v = ¢;
and w = e;. Then multiplying [z]” by [e;]” on the left picks off the ith row of [z]", and
multiplying the resulting row vector on the right by [e;] picks off the jth entry, so

[o] 2] [w] = [e:] "] [e] = ([2]")yy
Likewise,
o] (= [a])[w] = [ei) " (=[2])]es] = (=[a])yy
Thus ([z]");; = (—[x])i; for each 1 < 4,5 < dimV, so [z] = —[z]. O

Proposition 12.16 (Exercise 7.12i). Let V' be an module for the Lie algebra L. Let
{e1,eq,...} be a basis of V. Define a linear map ¥ : V. — V* by i(e;) = 0" where 0'(e;) = d;;.
Then 1 is an isomorphism if and only if the matrices representing the action of L in the
basis B are skew-symmetric.

Proof. Note that in terms of the basis 3, we think of e; as being a column vector. Then 6"

is a row vector, and [0’] = [e;]7. More generally, [¢(v)] = [v]T.

Suppose ¢ is an isomorphism. Then for x € L,v,w € V, we have ¢(z - v)(w) = (z -
() (w) = —(v)(xz-w). Now we think of this equation in terms of matrix representations,
so we think of [v], [w] as column vectors.

(@ v)] = ([2]])" = ][]
[W(z - v)(w)] = [(@ - v)][w] = [o]" [2]" [w]
[—()(z - w)] = —[v]" [z]w
=[] [2]" [w] = [v]" (= [a])[w]



for all z € L,v,w € V. Then by the lemma, [z]T = —[z], so all the matrices representing
the action of L are skew-symmetric.

Now suppose that the matrices [z] for z € L are skew symmetric (with respect to the basis
p ={e1,ea,...}). Then we claim ¢ is an isomorphism. We need to show that ¢(x - v)(w) =
(x - (v))(w) for x € Lyv,w € V.

(2 - v)(w)] = [y (] o]) (w)]

= [(z - () (w)]

Thus ¢ (x - v)(w) and (x - (v))(w) have the same matrix representation (with respect to (),
so they are equal. O]

Proposition 12.17 (Exercise 7.12ii). Let L be a Lie algebra over F, and let V,W be L-
modules. Define an action

L x Hom(V, W) — Hom(V, w)
(z-0)(v) =z (0(v)) - O(z-v)

for x € Liv € V.6 € Hom(V,W). This action gives Hom(V, W) the structure of an L-
module.

Proof. We must show that the equations M1, M2, and M3 hold. Let a,b € F,z,y € L,v € V,
and 60,1 € Hom(V,W).

((ax + by) - 0)(v) = (ax + by) - (6(v)) — O((ax + by) -
(0

=a(z - (6(v))) + bly
=a(z-(0(v)) —0(z-v)) + by (0(v)) —O(y - v))
=a(x-0)(v) —bly-0)(v)
= (a(z-0) = by - 0))(v)

= (ax+by)-0=a(x-0)—Db(y-0)

Thus M1 holds.
(af + b)) (v) =z - ((ab + b)) (v)) — (ad + b)) (x - v)

=z (ab(v) + bp(v)) — (ab(x - v)) — bip(x - v)
=a(z - (0(v))) + b(z - (Y(v))) — ab(z - v) — bp(z - v)
=a(z - (0(v)) = 0(z - v)) + b(z - (Y(v)) — P(x - v))
=a(z-0)(v) + bz -¥)(v)
= (az - (0) + b(z - ¥))(v)

— z- (a0 + b)) =a(x-0)+b(x- )



Thus M2 holds. To show M3 holds, we must show that [z,y] -0 =z -(y-0) —y-(x-0) as
maps, so we need to show that for v € V' these maps act on v in the same way. First we

compute ([z,y] - 0)(v).

([z,9] - 0)(v) = [, 9] - (6(v)) — O([2, 9] - v)
=z (y-(0(v) =y (z-(0(v) = 0(z - (y-v) —y-(z-v))
=z (y-(0v)) —y-(z-(0(v) =0z (y-v)+0(y-(z-v))
Now we compute (z - (y-0) —y - (z-60))(v). We compute the two terms separately after
expanding.
(@ (g 0) =y (@ 0)) = (- (g 0)©) — (y- (z)(v)

)
z-((y-0)(v) = (y-0)(z - v)
= (y-(0v) —z-0(y-v)) —y-(0(x-v) +0(y-(z-v))
(y-(z-0)(v) =y-(z-(0(v) —y-(O(x-v)—z-(0(y-v) +0(z-(y-v))
Now using the computations for the two terms, we get an expression for (z-(y-0)—y-(z-0))(v)
involving eight terms.

(@-(y-0)—y-(x-0)() =2 (y-(0(v) —z-0(y-v)) —y-(6(x-v) +0(y-(z-0v))
+y-(@-(0() —y-(0(z-v)) —z-(0(y-v)) +0(z-(y-v))

(z - (y-0)(v)

Fortunately, two pairs of these terms cancel: we have a —z - (6(y-v)) term and a z - (0(y - v))
term, which cancel each other, and also the pair —y - (6(z - v)) and y - (6(z - v)). This leaves

(@-(y-0)—y-(z-0)(v) =2-(y-(0(v) +0(y- (z-v))
+y-(z-(0() +0(z-(y-v))

and one can match up these terms one by one with the four terms in our expression for
([z,y] - 0)(v) computed earlier. Thus, we have shown that Hom(V, W) is an L-module with
this action. O

Proposition 12.18 (Exercise 7.12ii). Let V,W be L-modules and define an L-module struc-
ture on Hom(V, W) by

(x-0)(v) =z (0(v)) — Oz v)
forx € L,0 € Hom(V,W), and v € V. Then 0 is an L-module homomorphism if and only
ifx-60=0 forall z € L.

Proof. Suppose -0 =0 for all x € L. Then for v € V,
(x-0)(v)=x-00W)—0(z-v)=0 = O(z-v)=2x-(0(v))

thus 0 is an L-module homomorphism. Now suppose that # is an L-module homomorphism.
Then for x € L,v € V,

O(z-v)=z-(0(v) = z-0(v)—0x-v)=(x-0)(v)=0 = z-0=0
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13 Chapter 8 Exercises

Proposition 13.1 (Exercise 8.1). Let {e, f,h} be the usual basis for sl(2,C) and let V; be
the vector space of homogenous polynomials in x and y of degree d. Let 5 be the usual basis
for V.
5 = {xd7 xdily? A yd}
Define a module structure by ¢ : sl(2,C) — gl(Vy) by
0 0 0 0
—r— = y— h) = r— — y—
¢(e) 5y o(f)=yg- ) =15 Y3,
Then for any basis element x%y°, the submodule generated by x%y° is all of V.
Proof. Let W), = span{x*y¢=*} for k = 0,1,...d. Then V; = Wod W, & ... ® W;. We
compute the image of W}, under the action of ¢(e) and ¢(f).

0
¢(e)Wy = SPan{ﬂfa—yx"”yd"“} = span{(d — k)2" 1y} = Wiy

0
O(NWi = spanfy oy} = span{a1y™ 1} = Wiy

The submodule generated by x%® contains W,, and then by action of ¢(e), it also contains
Weoi1, Wasa, ... Wy By the actino of ¢(f), it also contains W, 1, W,_o,...Wy. Thus the
submodule contains each W}, so it contains all of V. ]

Proposition 13.2 (Exercise 8.2i). Let v : sl(2,C) — gl(C) be the trivial representation and
let ¢ :s1(2,C) — gl(Vh) be the representation given on pages 67-68 of Erdmann and Wildon.
Define 0 : C — Vy by O(x) = x. Then 0 is a Lie module isomorphism.

Proof. Vj is equal to C as a set, since V; is the set of constant polynomials over C. Since 0 is
the identity on C, it is a bijection and it is linear. We need to show that §(¢(z)v) = ¢(z)0(v)
for all v € C and each x in some basis of sl(2,C). We use the usual basis e, f, h. Since
Y(x)v =0, we have 0(¢(z)v) = 0 for all z € sl(2,C). Thus the LHS of our equation to show
is always zero.

pe)v = x%v =0
S =y =0
You
¢(h)v=x%v+y(%v=0+0=0
Thus the RHS of our equation to show is also always zero. O

Proposition 13.3 (Exercise 8.2ii). Let ¢ : s1(2,C) — gl(C?) be the natural representation
and let ¢ : s1(2,C) — gl(V7) be the representation described by Erdmann and Wildon. Define

0:C%—V; by
1
0 (ZQ) =o'z + 0y

Then 0 is a Lie module isomorphism.
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Proof. 6 is clearly a bijection. We show that 6 is linear.
vt w! vl + w?
(1 (2)+ () o G i)
= (W' +wh)z + (M +w?y
1 1
-0( () - ()

Thus 6 is linear. We need to show that 0(¢)(x)v) = ¢(x)0(v) for v € C? and all x in some
basis of sl(2,C). We use the usual basis e, f, h.

swier) =0 (o o) (%)) = () = v = st + %) = oleroto
o =0 ( (3 9) (52)) =0 () = v = ottt +%) = o000

Proposition 13.4 (Exercise 8.2iii). The linear map 6 : (2,C) — V. given by
Ole) =2  O(h)=—22y O(f) =—y’
1 an isomorphism of Lie modules.

Proof. 6 is a linear bijection by definition. We need to show that §(ad z(y)) = ¢(z)0(y) for
x,y € {e, f,h}.

O1F, ) = 0(2F) = ~247 =y (~2ay) = O()(h)
0([h,e]) = 0(2e) = 22* = (xﬁ _ 0 ) 2? = ¢(h)0(e)
0

ox yﬁ_y
0
oy — 92— [ OO N ey
0 1) = 0(-27) =222 = (-~ 5 ) (~42) = o(1O(1)
]
Proposition 13.5 (Exercise 8.3). The subalgebra of sl(2,C) consisiting of matrices of the

O

S ¥ %
O ¥ ¥
o O O

is isomorphic to sl(2,C).
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Proof. Let A be the subalgebra in question. In terms of 2 X 2 unit matrices, the usual basis
e, f, h for sl(2,C) is the matrices {e, f,h} = {e12, €01, €11 — €22}. One can see that the 3 x 3
unit matrices {ej, €21, €11 — €92} are a basis for A. We define a linear map ¢ : sl(2,C) — A

by
¢(€12) = €12 ¢(€21) = €21 ¢(€11 - 622) = €11 — €22

where e;; may refer to either a 2 x 2 or 3 x 3 matrix depending on context. and claim that
¢ is a Lie algebra isomorphism. Since it maps basis to basis, it is a bijection and linear. As
shown in chapter 1, the rule for the bracket of unit matrices is

[€ij, ert) = Ojxeq — Oien;
So clearly, the brackets in sl(2,C) and A are preserved by ¢ since ¢ simply changes the
interpretation of unit matrix from 2 x 2 to 3 x 3. O]
Proposition 13.6 (Exercise 8.3). Because of the previous proposition, we can view sl(3, C)

as a module for sl(2,C) with the action x -y = [p(x),y|] where ¢ : s1(2,C) — s1(3,C) is the
map

As an sl(2,C) module, s1(3,C) = Vo @ Vi & Vi @ Vh.

Proof. Let {e, f,h} be the usual basis for sl(2,C). In terms of the matrix units, e = ejq, f =
eg1 and h = ey — egn. Conveniently, ¢(e;;) = e;;, where on the LHS we view e;; as a 2 X 2
matrix and on the RHS we view e;; as a 3 x 3 matrix. Consider e;3 € sl(3,C). Using the
rule [e;;, ext] = 0jieq — dqeyj, we compute

h-e3 = [h, 613] = [611 — €922, 613] = [611> 613] - [622, 613] = €13
e-e3=le,e13 =0
Thus by Corollary 8.6, the submodule generated by ej3 is isomorphic to V;. Since f -
€13 = €93, this submodule contains the linearly independent vectors {ej3,e93}. Since Vj is
2-dimensional, we conclude that < e;3 >= span{ejs, ea3}. Now consider ez;. We compute
h-e3 = e3
€+ €39 = 0
J e =—exn
So as before, we use Corollary 8.6 to conclude that < egy >= V}, and < e3s >= span{ess, 31 }.
Now consider e;5. We compute
h €12 = 2612
€+ €1 = 0
fren= —(611 - 622)

f-(f-e)=f (=h)=—[fh] =2f = 2ex
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Thus by Corollary 8.6, < e;s >= V, and < e15 >= span{ejs, €91,€17 — ex}. Finally, we
compute

h-(e11 + ea2 — 2e33) =
e

0
- (e11 + €22 — 2e33) =0

so by Corollary 8.6, < €17 + €20 — 2e33 >= V. Putting all of this together, we have

81(3; C) = Spaﬂ{€12, €21, €11 — €22, €32, €31, €23, €13, €11 T €22 — 2633}
:<€12>@<€32>@<€13>@<€11+€22—2€33>
2Vl VooV

]

Lemma 13.7 (for Exercise 8.4). Consider the sl(2,C) module V; with d € N U {0}. Let
W,={veVy:h-v=rv}. Thenifd is even, dimWy = 1 and dimW; = 0. If d is odd,
then dim Wy = 0 and dim W, = 1.

Proof. As shown on page 68 of Erdmann and Wildon, for a basis element z%y?=¢ of V,
h-z%? = (a — (d — a))zy"™* = (2a — d)zy*"
Suppose d is even. Then a = d/2 is an integer, so
b 22?2 = (/2 — d/2)a¥2y? = 0

but for no other basis element is A - 2%~ equal to zero, so Wy = span{z%?y%?}. Since d
is even, 2a — d is also even, so 2a — d # 1, so Wi = {0}, so dim W; = 0.

Suppose d is odd. Then 2a — d is odd, so 2a — d # 0, so Wy = {0}. But there is precisely
one a = (d + 1)/2 such that 2a — d = 1, so there is one basis element x(®+1/2¢(@=1/2 guch
that

B - x(d+1)/2y(d—1)/2 _ ((d + 1)/2 _ (d _ 1)/2)$(d+1)/2y(d—1)/2 _ $(d+1)/2y(d_1)/2
so dim Wy = 1. O

Corollary 13.8 (to previous lemma, for 8.4). Let V; be the sl(2,C) module defined by
Erdmann and Wildon. Then dim Wy + dim Wy = 1.

Proof. 1f d is even, dim Wy + dimW; = 140 = 1. If d is odd, then dim Wy + dim W; =
0+1=1. ]

Proposition 13.9 (Exercise 8.4). Let V' be a finite-dimensional s1(2, C) module. Let W, =
{veV:hv=rv}. ThenifV isa direct sum of k irreducible modules, k = dim Wy+dim W.

Proof. By Weyl’s Theorem and Theorem 8.5 of Erdmann and Wildon, we can write V' as a
direct sum of k irreducible modules, each of which is isomorphic to some V.

V:le@‘/dQ@...@‘/dk
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Then we define W,, = {v € Vg, : h-v =rv}. Then

k
W():{UGVZh'U:O}:@WOi
i=1

k
Wi={veV:h-v=0=PW,
i=1
By the previous corollary, dim Wy, & W3, = 1, because the dimension of a direct sum is the
sum of the dimensions. Note also that in the following computation, we use the fact that
the dimesion of a sum is not changed by changing the order of the summands.

k k k
i=1 i=1

=1

O
Lemma 13.10 (for Exercise 8.6i). Let V' be an sl(2,C) module. Then for v €V,

fe-v=(ef—h) v (13.1)
ef -v=_(fe+h) v (13.2)
he -v = (eh + 2¢) - v (13.3)
eh-v=(he—2e) v (13.4)
hf-v=(fh—2f)v (13.5)
fh-v=(hf+2f)-v (13.6)
%heh v = (%6112 +eh)-v (13.7)
%heh v = (%hze — he) v (13.8)
%hfh.v:(%f}ﬂ—fh) v (13.9)
%hfhm:(%hszrhf) v (13.10)

Proof. Proof of 0.1:
h-v=le f]-v=fe-v—ef-v = fe-v=(ef —h)-v
Proof of 0.2:
h-v=(ef —fe)-v = ef-v=_(fe+h) v
Proof of 0.3 and 0.4:

le,h] -v=(eh—he)-v = —2e¢-v = (eh — he)cotv
= he-v=(eh+2¢)- v
= ¢h-v=(he —we) v
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Proof of 0.5 and 0.6:

[f,h]-v=(fh—nf)-v = 2f-v=(fh—hf) v
= hf-v=(fh—2f) v
= fh-v=(hf+2f)-v

Proof of 0.7:
[h,e]-h-v=(he—eh)h-v = (heh — eh?) v
2¢h - v = (heh — eh?) - v
1 1,
§h6h~’l}— (6h—|—§eh)-v
Proof of 0.8:
h-[h,e]-v = h(he—eh)-v —(th—heh)'v
2he - v = (th — heh) -v
heh -v = (h 26—2h6)-v
%heh-’u—( h%e — he) - v
Proof of 0.9:
o fl b= (hf = fh)-hev = (hfh— fA2) -
—2fh-v=(hfh— fh*) -v
hfh-v = (fh*> —2fh)-v
1 1.,
§hfh —(2fh — fh)-v

Proof of 0.10:

Bl f] -0 = h(hf = fR)-v = (R2f — hfh) v
—2hf-v=(h®f — hfh)-v
1 1
§~U:(§+hf)-v
[
Proposition 13.11 (Exercise 8.6.i). Let M be a finite-dimensional sl(2,C) module, and
define ¢ : M — M by

c(v) = (ef—l—fe—ir %h2> v

Then ¢ is a homomorphism of sl(2, C) modules.
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Proof. To show: We must show that ¢ commutes with the actions of e, f, and h. First we
show that ¢ commutes with c.

ef -v=(h+ fe)-v
e’ f-v=(eh+efe) v

1 1
(62f+efe—|——eh) S = (eh+2€f@+§eh2) -V
1
cc(v) = (2efe) + §heh) ‘v

(

fe v—(ef—h)-v
= (efe —he) - v
= (

(efe+ fe* + h2 )-v Zefe—he—i-%hZe)m
cle-v) = (2efe+ %heh) v

Thus e - ¢(v) = ¢(e - v). Now we show that ¢ commutes with the action of f.

ef -v=(h+ fe)-v
ef?-v=(hf+ fef)-v

(ef2+fef+1h2f)-v:(hf+2fef+1h2f)-v
of-v)=(2fef + hfh)

(

fe-v={(ef—h)-v

fre-v=(fef = fh)-v
= (

(fPe+ fef + = fh2> 2fef — fh+ = fh2>
f-elv) = (2fef) + 5hfh) v

Thus ¢(f -v) = f - ¢(v). Finally, we show that ¢ commutes with the action of h.

hef -v = (ehf —2ef)-v
hfe-v = (fhe—2fe)-v
(hef + hfe)-v=(ehf+ fhe+2ef —2fe)-v
efh-v=(ehf+2ef)- v
feh-v = (fhe —2fe)-v
(efh+ feh)-v = (ehf+ fhe+2ef —2fe)-v
Thus
c(h-v):(efh+feh+%h3)-v:(h@f—f—hfe—l—%h?’)-v:h-c(v)
Thus ¢ is an sl(2,C) module homomorphism. O
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Proposition 13.12 (Exercise 8.6ii). Let Vy; be an irreducible s1(2, C) module. Letc: Vy — Vy
be the Casimir operator, which is defined by

c(v) = (ef + fe+1/2h%) v
We have shown that ¢ is a homomorphism. We claim that ¢(v) = 1/2d(d + 2)v.

Proof. By Lemma 8.4, V; contains a w such that h-x = Aw and e-w = 0. By Corollary 8.6,
A =d. Then

c(w) = (ef + fe+1/2h*) - w=ef -w+ fe-w+1/2h* - w = dw + 0+ 1/2d*w
The last equality uses Exercise 8.5 to evaluate ef - w.
c(w) = (1/2d + 1)dw = 1/2(d + 2)dw

By Schur’s Lemma, since ¢ is an sl(2, C) module homomorphism from Vj to itself, ¢ must be
a scalar multiple of the identity transformation. Thus since ¢(w) = 1/2(d 4+ 2)dw for some
w € Vg, it follows that ¢(v) = 1/2(d + 2)dv for all v € V. O

Proposition 13.13 (Exercise 8.6iii). Let M be a finite dimensional s1(2,C) module and let
c: M — M be the Casimir operator. If

M = @ker(e —NI)™
i=1

is the primary decomposition of M, then each ker(c — \;I)™ is an s1(2,C) module.

Proof. To show: For v € V; = ker(c — M\ [)™, e v, f-v,h-v € V;. Let v € ker(c — \;I)™.
Note that (¢ — A\;I)™ is a polynomial in ¢. By part (i), e, f, h commute with ¢, so they
commute with any polynomial in ¢, so

(c—=AND)m(e-v)=e-(c—NI)"(v) =0

(This is zero because v € ker(c—A\;I)™.) Likewise for f and h, the algebra is nearly identical.
Thus ker(c — A\;1)™ is an sl(2, C) submodule. O

Proposition 13.14 (Exercise 8.6iv). Suppose M is a finite-dimensional s1(2, C) module such
that M has just one generalized eigenspace of the Casimir operator c, that is, suppose

M =ker(c — XI)™

for some \ € C and suppose that some irreducible submodule of M is isomorphic to V. Then
every irreducible submodule of M s isomorphic to Vy.

Proof. Let U be an irreducible submodule of M such that U = V;. Acting on M, ¢ has
only one eigenvalue A. By part (ii), ¢ acts on U = V, as the scalar 1/2(d)(d + 2), so
A =1/2(d)(d +2). Let N =V} be another irreducible submodule of M. Then ¢ acts on N
by the saclar 1/2(k)(k + 2), so A = 1/2(k)(k +2). Then 1/2(d)(d + 2) = 1/2(k)(k + 2) so
k=d. Thus N = V. [
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Proposition 13.15 (Exercise 8.6v). Let M be an sl(2,C) module such that M = ker(c—\I)™
and M has an irreducible submodule isomorphic to Vy. Let N be a submodule of M. Then
any irreducible submodule of M /N is isomorphic to Vj.

Proof. By part (iv), M is isomorphic to a finite direct sum of Vj’s,
M=V,eoVa®...0Vy

Since Vj is irreducible, if any N is a submodule of M, then N is also isomorphic to a finite
direct sum of Vj’s, with less than or fewer summands than M.

Ne2V,@...0V,
Then
MEN®(Vid...eV,)
and thus M/N is isomorphic to the remaining V,’s after “subtracting” N.
M/N=2V,&...0V,
Thus every irreducible submodule of M /N is isomorphic to V. ]

Proposition 13.16 (Exercise 8.7). Define 1 : RS — s1(2,C) to be the linear map defined by

=" g) o= (0 F) o= (Y

We have shown that i is a Lie algebra isomorphism. We claim that

3

V(@) +9()* + P(y)* = -1

e}

ol

where I is the 2 x 2 identity matriz. Furthermore, we can write ¥(z),¥(y), and (z) in
terms of e, f, and h, and then see that the Casimir operator is represented by 3/21 (in this
representation).

Proof.
U(x)® = P(y)? = ¥(2)” = —1/41
V(@) + 9 (y)* + 9 (2)” = =3/41

bla) = 1/2e — 1/2f
Wly) = —i/2e — i/2f

Y(2) = —i/2h
e = () +iY(y)
f=—v() +iy(y)
h = 2i(2)



ef + fe+1/2h* = ((x) + it (y )( () +ih(y))
+ (= () + i (y) (W (x) + i(y) + 1/2(2iv(2))”
= ()’ — () x)+—m#() U(y) — ¥(y)’

o
—(z)’ +4¢@D¢() ip(z)e(y) — ¥(y)* +1/2(4)(-1)¢(2)*
—2¢(x)* = 2¢(y)* — ()
—2(=3/4)1
3/21
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14 Chapter 9 Exercises

Proposition 14.1 (Exercise 9.1). Let V' be a vector space, and suppose x € gl(V) has
Jordan decomposition v = d +n. Then adz : gl(V) — gl(V) has Jordan decomposition
adx = add + adn.

Proof. To show: adz = add + adn, and add is diagonalisable, and ad n is nilpotent, and
addoadn = adn o add. Because ad is linear, adz = ad(d + n) = add + adn. Since d is
diagonalisable, by Exercise 1.17, ad d is diagonalisable. Since n is nilpotent, by Lemma 5.1,
ad n is nilpotent. Finally, let ¢ € gl(V). Then

addoadn(¢) = [d, [n, ¢|]
= dn¢ — dgn — nod + ¢nd
= nd¢ — ned — dén + ddn
- [n7 [da ¢]]
=adnoadd(¢)
]

Lemma 14.2 (for Exercise 9.2). Let A, B be n X n matrices such that A is upper triangular
and B is strictly upper triangular. Then tr(AB) = 0.

Proof. Let A = (a;j)B = (b;;). Then
(AB)ij = Z aikbkj
k=1
(AB>M = Z @ik brg
k=1

tr(AB) = i iakmbmk

m=1 k=1

Since both A, B are upper triangular, a,,, = 0 for m < k and b,,;, = 0 for £ < m. Thus in
our sum for the trace, all terms are zero except perhaps those of the form agbgy.

n

tr(AB) = Zakkbkk

k=1
Since B is strictly upper triangular, by, = 0 for each k. Thus tr(AB) = 0. O

Proposition 14.3 (Exercise 9.2). Let V' be a complex vector space and let L be a solvable Lie
subalgebra of gl(V'). Then there is a basis of V' in which every element of L' is represented
by a strictly upper triangular matriz. Consequently, traxy =0 forx € L,y € L.
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Proof. By Lie’s Theorem, there is a basis of V' in which every x € L is represented by an
upper triangular matrix. If 21,29 € L are upper triangular and z3 = [z7, 2] € L', then z3
is strictly upper triangular, since the bracket of upper triangular matrices is strictly upper
triangular (see Exercise 4.5). Thus L’ has a basis consisting of strictly upper triangular
matrices.

Let x € L,y € L. Then since x is upper triangular and y is strictly upper triangular, by
the lemma, trxy = 0. [

Proposition 14.4 (Exercise 9.3). Let L be a Lie algebra and let I be an ideal of L. Then
I+ is an ideal of L.

Proof. To show: for b € I+ 2 € L, we have [b,z] € I*. Let b € It,a € I,x € L. By
definition,

I*={be L:k(ba)=0foracl}

Since [ is an ideal, [x,a] € I. Then k(b, [z, a]) = 0, and by associativity of k (see page 80 of
Erdmann and Wildon),

k([b,x],a) =0
Since a € I was arbitrary, this shows that [b, ] € I*. Thus I+ is an ideal of L. ]

Proposition 14.5 (Exercise 9.4i). The Killing form of sl(2,C) has the matrix

O = O
O O =
co O O

with respect to the usual basis e, f, h. It is non-degenerate.

Proof. Computations were done in Mathematica.

k(e,e) =0 k(f,e) =4 &k(h,e)
ke, f) =4 w(f,f) =0 &(h,[)
k(e,h) =0 k(f,h) =0 &k(h,h)

0
0
8

For finite-dimensional vector space, a bilinear form is non-degenerate if and only if its matrix
representation is invertible. This matrix clearly has nonzero determinant, so the form is non-
degenerate. O]

Proposition 14.6 (Exercise 9.4ii). The Killing form k on gl(2,C) is degenerate.
Proof. Take the identity matrix I and let z € gl(2,C).
adl(z)=[l,x]=Iv—al=2x—2=0

so r(I,z) =0 for z € gl(2,C). Thus gl(2,C)* # {O}, so k is degenerate. O
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Proposition 14.7 (Exercise 9.5). Let L be a nilpotent Lie algebra over a field F'. Then the
Killing form k on L is always zero, that is, for x,y € L,

k(z,y) =tr(adzoady) =0

Proof. Let z,y € L. Since L is nilpotent, ad x,ad y are nilpotent maps (Theorem 6.3). By
Theorem 6.1, since ad L is a Lie subalgebra of gl(L) in which every ad z is nilpotent, there is
a basis of L in which everything in ad L is represented by a strictly upper triangular matrix.
Then ad x o ad y is also represented by a strictly upper triangular matrix, so

tr(adz oady) =0
[

(Exercise 9.6)
We compute the Killing form for the complex 3-dimensional Lie algebras discussed in chapter
3. The Heisenberg algebra is nilpotent, so it has a Killing form that is always equal to zero.
The algebra considered in 3.2.4 is isomorphic to sl(2, C), which we have already computed
the Killing form for.

The Lie algebra in section 3.2.2 is given by L = span{z,y, z} where [z,y] = z, [z, z] =
[y, z] = 0. Then one can compute the matrices of ad z, ad y, ad z:

010 -1 0 0 0 00
[adz]= {0 0 O ady]=1 0 0 0 ladz] =10 0 0O
0 00 0 00 0 00

From this, clearly k(z,a) = 0 for any a € L. We still need to compute k(z,y), k(z,z), and
k(y,y). To do this, we compute the matrix products [ad z][ad y], [ad z]?, [ad y]* and take the
traces.

[ad z]fad y] = [ad 2] = lad y]? =

o O O
o O O
o O O
o O O
o O O
o O O
o O =
o O O
o O O

so we get k(z,x) = k(z,y) = 0 but k(y,y) = 1. Thus to completely characterize the Killing
form, we can write either

: 000

1 ifa=b=

/{(a,b):{ ra=0=y k]=[0 1 0
0 otherwise 00 0

Now we consider the Lie algebras discussed in sectin 3.2.3, beginning with case 2. In case

2, there is only one isomorphism class, which is the Lie algebra L = span{z,y,z} with

[z, y] =y, |z, z] =y + 2, [y, 2] = 0. Then we compute the matrices of ad z, ad y, ad z.

0 00 0 00 0 0 O
ladz] =0 1 1 ady]=1-1 0 0 [adz]=1-1 0 0
0 01 0 00 -1 0 0O
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And now we compute all of the necessary matrix products.

lad z][ady] = 0
l[ady]ladz] =0
0 00
[adz]ladz]= -2 0 0O
-1 0 0
0 00
[adz]>= [0 1 2)
0 01
[ady]” = 0
[ad2]? =0

So k(x,z) = 2 but it is zero for everything else. Thus we completely characterize x by

(a,b) 2 ifa=b==x (k] (2) 8 8
K CL, = K| =
0 otherwise 00 0

Now we consider the class of 3-dimensional Lie algebras considered in Case 1 of section 3.2.3.
These are the algebras such that L = span{x,y, z} and [z,y] = v, [y, 2] = 0, [z, z] = Az for
some fixed A € C. (As was shown in 3.2.4, we get a non-isomorphic Lie algebra for each
A € C except that the Lie algebra with A~! is isomorphic.) We compute the matrics of
adz,ady, ad z.

0 0O 0 00 0 00
ladz]= [0 1 0 ladyl]=1-1 0 0 adz]=1 0 0 0
0 0 M\ 0 00 -2 00
Now we compute the needed matrix products.
0 00
[adz]lady] = -1 0 0O
0 00
lady|ladz] =0
lad z][ad 2] = 0
0 0 0
[adz])*= 10 1 0
0 0 M\
[ad y)* = 0
[ad2]? =0
So we can characterize the Killing form by
. 1+X 0 0
1+ X ifa=b=
m(a,b):{ + na ' v (k] = 0 00
0 otherwise 0 00
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This concludes our characterization of the Killing forms of the 3-dimensional complex Lie
algebras.

Proposition 14.8 (Exercise 9.10). Let L be a complex Lie algebra and let 5 by a symmetric,
bilinear, associative form on L. Define

0:L—L" Ox)y=pP(x,vy)
Then 0 is linear. (We call 6 the linear map induced by f3.)

Proof. First, we need to show that 6 is well-defined, that is, that 6(z) does map into L*. To
do this, we need to show that 0(x) is a linear map. Let a,b € C and z,y,2 € L.

0(x)(ay + bz) = B(z,ay + bz) = af(z,y) + bB(z, 2) = ab(x)y + bO(x)z
Thus 0(x) is linear. Now we can show that 6 is linear. To do that we consider how 6(az + by)
acts on a given z € L.
O(ax +by)z = Blax + by)z = aB(x,z) + bB(y, 2) = ab(x)z + bO(y)=
Thus
O(azx + by) = ab(x) + bO(y)
(The above is an equality of maps.) Thus @ is linear. O

Proposition 14.9 (Exercise 9.10). Let L be a complez Lie algebra and let B be a symmetric,
associative bilinear form on L. Define 0 : L — L* by 0(x)y = B(z,y). If B is non-degenerate,
then L and L* are isomorphic as L-modules.

Proof. First we need to show that 6 is an L-module homomorphism. To do this, we need to
show that for x,y € L, 0(x - y) =z - 0(y).

(Recall that when we regard L as an L-module, the action is simply the bracket, that is,
x-y = [z,y]. When we regard L* as an L-module, the action is given by (z-¢)y = —¢(z - y)
where x,y € L and ¢ € L*.)

Let z,y,z € L. We confirm that 6(x - y) = z - 0(y) by looking at how each of the two
maps acts on some z € L.

0(z - y)z = 0z, y))z = B([z, yl, 2) = B[, [y, 2]) = =B([z, [z, y])
= —0([z, 2], y) = =By, [z, 2]) = =0(y)([x, 2]) = (x - 0(y))=

Thus we have the desired equality of maps,

0(z-y) =x-0(y)

Thus € is an L-module homomorphism. This did not depend on the non-degeneracy of [,
but now we show that if g is non-degenerate, then 6 is an isomorphism. To do this, we show
that the kernel of 6 is {0}. We claim that L' = ker 6.

={zeL:p(ry) =0,vy€ L}

={zeL:0(x)y=0,Yye L}

={zeL:0(x)=0}

= ker 6
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If B is non-degenerate, then L+ = {0}, so then kerf = {0} which implies that # is an
isomorphism. O

Proposition 14.10 (Exercise 9.11). Let L be a simple Lie algebra over C with Killing form
k. Let B be a symmetric, associative, non-degenerate bilinear form on L. Then k = A3 for
some X\ # 0 with \ € C.

Proof. By Exercise 9.10, x and 3 induce L-module isomorphisms 6,,60s : L — L*. Then
95951 : L — L is an L-module isomorphism. Since L is simple, it is an irreducible L-module

(example 7.9(2) on page 59). By Schur’s Lemma, Q,ﬁgl = A1, for some A € C. Then

R(,y) = Ox(x)y = Mg(x)y = AB(z,y)
Thus £ = AS. (Note that A # 0 since &,  are both non-degenerate.) m

(Exercise 9.13) We give an example to show that the requirement of d and n commuting in
the Jodran decomposition is necessary. Specifically, we give two matrices d and n such that
d is diagonalisable, n is nilpotent, but d and n do not commute.

1 0 01 1 1
i=(y %) =0 o) emarn=(3 1)

Note that d is diagonal, so it is certainly diagonalisable, and n is nilpotent since n? = 0.

However,
0 —1 01
nd = (0 0 ) dn = (0 0)

Proposition 14.11 (Exercise 9.14). Let L be a complex semisimple Lie algebra. Suppose
¢ L — gl(V) is a faithful representation of L such that ¢(z) is diagonalisable for some x €
L. Then x is a semisimple element of L and thus x acts diagonalisably in any representation
of L.

Thus dn # nd.

Proof. Let x be as described. By Theorem 9.15, x can be written uniquely as x = d+n in an
abstract Jordan decomposition. Then by Theorem 9.16, the Jordan decomposition of ¢(z)
is ¢(x) = ¢(d) + ¢(n), where ¢(d) is diagonalisable. By hypothesis ¢(x) is diagonalisable.
We claim that ¢(x) and ¢(d) commute, since

since ¢(d), ¢(n) commute by definition of Jordan decomposition. Thus by Lemma 16.7, ¢(z)
and ¢(d) are simultaneously diagonalisable with respect to some basis . Then since

[B(@)]s = [P(d)]s + [6(n)]s
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it follows that ¢(n)]s = 0, so ¢(n) = 0. Since ¢ is one-to-one, n = 0, thus x is semisimple.
Thus if 6 : L — gl(V') is any representation of L,

0(z) = 0(d+n) = 0(d + 0) = 0(d)

where 6(d) is diagonalisable, so §(x) is diagonalisable. O
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15 Chapter 10 Exercises

Proposition 15.1 (Exercise 10.1). Let L be a finite-dimensional semisimple complex Lie
algebra and let H be a Cartan subalgebra. Let o € H* with o« # 0. Let

Lyo={x€L:[hz|=alh)z,Vhe H}
Fiz x € L,. Then ad x is nilpotent.

Proof. We can decompose L as

L=HoEPLs
Bed

where @ is finite. Then
(ad2)*(H) = adz(ad 2(H)) = adx({[z,h] : h € H}) C ad z(span{z}) = {0}

Thus (adz)*(H) = {0}. We will also show that adz acting on any Lg is nilpotent. Let
g e .

ad2(Ly) = {[2.y) : ¥ € Ls} € [Las L) € Lass
by Lemma 10.1(i). Then
(ad2)*(Lg) C ad@(La+p) C [Las La+p] € Loass
and by a simple induction
(ad 2)"(Ls) C Luass

There are infinitely many L,4g, but only finitely many nonzero root spaces of L. Thus for
some n, we have Ly, = {0}, so

(ad2)"(Ls) {0}

thus ad  restricted to L is nilpotent. We have shown that ad « is nilpotent on each summand
of L, so ad x acts nilpotently on all of L. n

Proposition 15.2 (Exercise 10.2). Let L = sl(n,C) withn > 2, and let H = span{h} where
h = ey1 — ex. Then L decomposes into weight spaces as

where the weights o, 5 : H — C are defined by a(h) = 1 and f(h) = —1 and the corresponding
weight spaces are

Lo={x € L:[hxz]=0}

Lyo={x€L:[hz|=uz}

Lg={xeL:[hz]=—x}
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Proof. We compute [h, e;;].
[h7 eij] = [611, eij] - [622, eij] = 5li€1j - 51j€1i + 621'623' - 52j€i2

When 4, j > 3, all of the Kronecker deltas become zero, so [h, e;;] = 0 for i, j > 3. Somewhat

surprisingly, when 4,j < 2, terms cancel and we again get zero. Thus [h,e;;] = 0 for
i,j < 2. When ¢ <2 but j > 3, then [h, e;;] = d1;e1; + dzie2; = €;;. Thus for i < 2,5 > 3,
span{el-j} C La. When ¢ Z 3 andj S 2, then [h, eij] = _61j61j - 52]'61'2 = —€;- Thus

in this case, span{e;;} C Lg. Thus we have allocated the entirety of the standard basis
each to one of Ly, L,, Lg. By definition, these weight spaces have trivial intersection, thus
L=Ly®L,® Lg. O

Proposition 15.3 (Exercise 10.3i). Let L be a semisimple complex finite-dimensional Lie
algebra with Cartan subalgebra H. Let o : H — C be a root of L with L, # {0}. Define
sl(a) = span{z,y, [z,y]} where x € L,y € L_,, and [z,y] € H. We know that sl(a) =
sl(2,C). Then there is a basis {€q, fa,ha} of sl(a) such that e, € Ly, fo € L_o, ho € H, and
alhy) = 2.

Proof. We have fixed z,y,h. We know that a(h) # 0 as shown in the Lemma. Let A\ =
2/a(h), then set e, = x, fo, = ANy, ho = Ah. Then e, € Ly, fo €_o, and h, € H, and

alhy) = a(Ah) = Aa(h) = %a(h) =2

[]

Proposition 15.4 (Exercise 10.3ii). Let o, ey, fo, ha be as above. Then 0 : sl(a) — sl(2,C)
defined by

O(eqa) =€ 0(fo) = f O0(ha) = h
15 a Lie algebra isomorphism.

Proof. 6 is a linear isomorphism of vector spaces because it maps a basis to a basis. We need
to show it preserves the bracket.

)
O([has €a]) = O(a(ha)es) = 20(en) = 2¢ = [h,e] = [(ha),0(eq)]
0 [

]

Proposition 15.5 (Exercise 10.5). Let L be a complez, finite-dimensional, semisimple Lie
algebra with Cartan subalgebra H. Let |®| be the root system corresponding to H. Then
dim L = dim H + |®|.

Proof. We can decompose L as a direct sum of root spaces,

L=H&EP La
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By Proposition 10.9, each L, is one dimensional. Thus
dim L = dim H + dim L,, + dim L, + ... = dim H + |®|
O]

Proposition 15.6 (Exercise 10.6). Let L =sl(3,C), and let H = span{e;; — eg2, €20 — €33}
be the Cartan subalgebra of diagonal matrices. Then the set of roots for H is

¢ = {aa_aaﬁa_ﬁa&_'_B?_a_B}
where o = €1 — €9, 8 = €5 — €3.
Proof. (For the definition of ¢; see page 92.) As shown on page 92, if i # j and
Li; ={x €sl(3,C) : ad h(x) = (¢; — €;)(h)x,Vh € H}
then Lij = span{e;;} and L;; is the root space for ¢, — ¢;. Thus
Ly = L, Log = Lg L1z = Layp
Loy =L_, L3y =L 4 L3y =L _op
And thus

13.C)=Ho@PL;=HoPL,

i#] ved
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16 Chapter 11 Exercises

Proposition 16.1 (Exercise 11.1). In R™ with the usual dot product, let e; be the vector
with a 1 in the ith position and zeroes elsewhere. Define

R={e;—e;j:1<i#j<n}
E =span R

Then R is a root system for E.

Proof. (R1) Clearly R is finite, by definition of E, R spans E, and 0 ¢ R.
(R2) It is obvious from the definition of R that it doesn’t contain any multiples of = other
than +x for x € R.
(R4) Let x = €; —e;,y = e — €y, 50 T,y € R.
2(z,y) _ 2(z,y)

<xay>: (y,y) = 92 :<x7y):(ei_ej)'<€k_€m>:5ik_5jk_5im+6jmez
(R4) This one is much harder than the others. We need to show that for z € R, s, is a
permutation of R. Since s, is a reflection through a hyperplane, it is a bijection from R" to
R". Thus all we need to show is that for z,y € R, we have s,(y) € R. Let x = ¢; — e; and
y=er—en (i #jand k # m). Then

2z -y
y-y

s:(y) =x —(z,y) = — y=x—(z-y)y

Now we have a bunch of cases.
Ty = Oik — Oim + Ojim — Oji
2 j=m,i =%k
i=k,j#m,j#FkORi#ki#m,j=m

=30 itkitmjAkjtm
-1 i#ki#m,j=kORi=m,j#m,j#k
2 t=m,j =k

\

(Note that in the case where z -y = 0, there might seem to be more possibilities, but those
possibilities are ruled out since i # j and k # m.) Thus in these same cases,

( )

(2 —2u j=m,i=k ( )
Sr(y): x Z#k,l#m,j%k,j%m :<(ei_€j)
xr+y i£ki#tm,j=kORi=m,j#%m,j#k ( )
(z+2y i=m,j=k ( )
( )

In every case, s.(y) € R, so (R4) O
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Proposition 16.2 (Exercise 11.2). Let R be a root system and let o, € R such that
(a, B) #0. Then (a, sa(B)) # 0.

Proof.
(@) = (- 700

=(a,B) — [« 2(04,5)@

- @) - (@ F0e)

~ (@8- 72 aa)

(a,8) = 2(ev, B)

- —(Ct,ﬁ)

If (o, B) # 0, then certainly —(«, 5) # 0. ]

Proposition 16.3 (Exercise 11.2). Let R be a root system in inner product space E. Let R;
be the equivalence classes defined in Lemma 11.8. Then R; satisfies (R3).

Proof. We need to show that for a, 8 € R;, we have s,(3) € R;. Let o, 5 € R;. Then there
exist y1,7e, - . - Yn such that o = vy, 8 = 72, and (Y, Yks1) # 0 for k. =1,2,...(n —1). Since
So preserves the inner product,

0% (Ve Yit1) = (8a(Vk)s Sa(Vet1))

Note that s,(71) = sa(@) = —a. (Note that since (—a, s4(72)) = —(a, s4(72)), we get
(Oé, 504(72) 7£ O) Thus we have «, Sa(72)7 5a<73)7 s Sa(’yn) = Sa(ﬁ) such that

(Oé, Sa('h)) 7£ O
(8a(72), 8a(v3) # 0

(Sa(Vn-1); a(B)) # 0
Thus s,(5) ~ a, 80 s4(8) € R;. O

Proposition 16.4 (Exercise 11.4). Let R = {*(e; —¢;) : 1 < i < j < 1+ 1} and let
E = span R. (E is a subspace of the inner product space R™1}.) Let a; = e; — ejyq for
1<i<l. Let B=A{ay,...oq}. Then B is a base for R.

Proof. First we need to show that B is a basis for E. B spans E since the —(e;—e;) contribute
nothing to the span of R. We need to show that B is linearly independent. Suppose that

l
E Ci; = 0
i=1

114



Then

l

0= Zci(ei — €it1)

i=1
l l

= E Ci€; — E Ci€it+1
i=1 i=1

I+1

!
= E Ci€; — g Ci—16;
i=1 i=2
=cre1 + (g —e)es+ ...+ (-1 — a)e — ce

Then since {ey, ...e;41} is linearly independent, it follows that ¢; = 0,¢; = ¢9,¢3 = ¢a, ... SO
we have ¢; = co = ... =¢y1 = 0. Thus B is linearly independent, so it is a basis for F.
Now we need to show that every § € R can be written as

Z k.o

aEB

where the nonzero k, have the same sign. Let § € R. Then 8 = =£(e; — ¢;), where
1<i<j<Il+1 Then

B ==x(e; + (—€ip1 + €iy1) + (—€iv2 +€iva) + ... + (—€jo1 +ej_1 —€;)))
= £((ei — €ip1) + (i1 — €i2) + ... +(ejo1 —¢5))
= :':(OéZ —|— ai+1 + ... —f- Oéj_1>

==+ Z koo
where

kj—{l O[E{O{Z‘,...,Oéj_l}

)0 otherwise

The =+ distributes to all the k,, so all the nonzero k, have the same sign. Thus B is a base
for R. O

Proposition 16.5 (Exercise 11.4). Let R, B be as in the above proposition. Then the positive
roots of R are

{e; —ej i<}
(Every other root is negative.)

Proof. As shown above, if § = e; — e; where ¢ < j, then 8 = Y kya where k, € {0,1}.
Thus f is a positive root. If f = —(e; —e;) then § = — )" kqa, so  is a negative root. [
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Proposition 16.6 (Exercise 11.5). Let R be a root system with base B. Fize v € R. Then
52(B) = {5,(a) : a € B}
s a base for R.

Proof. We know that s, : E — E is a linear bijection, and B is a basis for E, so s,(B) is a
basis for £. We also need to show that for § € R, [ can be written as

where the nonzero ¢, all have the same sign. Since s, permutes R, there exists 5y € R such
that s,(8p) = 8. Since B is a base, we can write fy as

60 = Zkaa

aeB

where the nonzero k, have the same sign. By linearity of s,

B =s,(60) = Z kosy(a) = Z koo

a€B a€s ()

Thus we have written § in the necessary form. m
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17 Appendix A - Linear Algebra

17.1 Quotient Spaces

Definition 17.1. Let V' be a vector space over F' and let W be a subset of V.. Then W 1is a
subspace of V if W is also a vector space over F (with the same addition as in V).

Proposition 17.2 (Condition for being a subspace). Let V' be a vector space over F and let
W C V such that forv,iu € W andt € F,v+u e W andtv € W. Then W is a subspace
of V.

Proof. Let VW, F be as described. Since Ov € W, W is nonempty. By hypothesis, W is
closed under addition. Let v € W. Then (—1)v € W, so —v € W, so W is also closed under
taking inverses, so W is a subgroup of V as an Abelian group, so W is an Abelian group.
Thus W satisfies properties 1-5 in the definition. Properties 6-10 follow for W since they
hold for all elements of V and F'. Thus W is a vector space over F. O]

Definition 17.3. Let V' be a vector space over F' and let W be a subspace of V. A coset of
W is a set of the form

v+W={v+w:weW}

Proposition 17.4. Let V be a vector space over F and let W be a subspace of V. Let
v,v" € V.. Then the cosets v+ W and v' + W are equal if and only if v —v" € W.

Proof. Suppose v — v € W. Let wy = v — v/, rearranging we have v = wg + v’. Let
xre€v+W. Then x = v+ wy for wy € W, so x = wg + wy + v'. Since W is closed under
addition, wg 4+ w; € W so x = v' + (wg +wq) € v' +W. Likewise, suppose y € v+ W. Then
y=v 4wy =wo+v+w; =v+(wy+wy) € v+W. Thusifv—v" € W, then v+ W =v'+W.

Now suppose v+ W =o'+ W. Since 0 € W, v+0 =v € v+ W, and since v+ W = v+ W,
v € v +W. Then there exists wq such that v = v/ +wy. Then wg =v—v', sov—2v" € W. O

Definition 17.5. Let V be a vector space over F' and let W be a subspace of V.. The
quotient space V/W s the set of all cosets of W, that is, the set

VIW ={v+W:veV}
We then define addition in this space by
(W4+W)+ W +W)=(v+0)+W
where v,v" € V.. We define scalar multiplication from F by
Aov+W)= v+ W
where A € F'.

Proposition 17.6. Addition and scalar multiplication for quotient spaces are well-defined.
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Proof. First we show that scalar multiplication is well-defined. Let v,v" € V such that
v+W = v'+W. We need to show that for A € F, A(v+W) = A(v/+W). Since v+W = v'+W,
by Proposition 17.4, v — v € W. Since W is closed under scalar multiplication, A(v — v') =
Av — X' € W. Then using the other direction of Proposition 17.4, \v + W = X' + W, so
we have shown what was needed to show, since Av + W = A(v + W) by definition.

Now we will show that addition is well-defined. Let vy, v, € V. We wil show ow that the
addition (v, + W) + (v2 + W) does not depend on coset representative. Let v}, v, € V such
that v} +W = v, +W and vy +W = ve+W. Now we need to show that (v; +w)+ (ve+W) =
(V] + W)+ (vh+W). By Proposition 17.4, v = v; +w; and v} = ve+wy for some wy, wy € W.
Note that since W is closed under addition, w; + we € W, soo

(v + W)+ (v + W) = (v +vy) + W

= ((vy +wy) + (vg +we)) + W
= (v + vy + (wy +wg)) + W
= (
= (

U1+U2)+W

]

Proposition 17.7. Let V' be a vector space over F', and let W be a subspace. Then the
quotient space VW is a vector space over F.

Proof. Let Let v,u,w € V and a,b€ F,sov+W,u+W € V/W.
(Closure) By closure of addition in V, v+u € Vso (v+W)+(u+W) = (v+u)+W € V/W.
(Associativity of addition) By associativity of addition in V/,

W+W)+ (u+ W)+ (w+W)) = v+ W)+ (u+w)+ W)

= (v+ (utw))+W
=((v+u)+w)+W

(v+ W)+ (u+W)) + (w+ W)

(Commutativity of addition) By commutativity of addition in V/,
(W4+W)+(u+W)=@w4+u)+W=(u+v)+W=(u+W)+ (v+W)
(Identity for Addition) 0+ W = W is the identity for addition because
O4+W)+w+W)=04+v)+W=0v+W
(Inverses for Addition) (—v + W) is an additive inverse for (v + W) because
(—v+ W)+ (w4+W)=(—v4+0v)+W=0+W
(Closure of scalar multiplication) For v € V,a € F, av € V by closure of scalar multiplication

inV,soa(v+W)=av+W e V/W.
(Associativity of scalar multiplication) a(b(v+W))+a(bv+W) = (ab)v+W = (ab)(v+W).
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(Identity for scalar multiplication) 1 (the multiplicative identity for F') is the identity for
V/W also, since 1(v + W) =1lv+W =v+ W.

(Distributivity over vector sums)
a((v+ W)+ (u+W)) =a((v+u)+ W)
=a(lv+u)+W
= (av +au) + W
= (av+ W)+ (au+ W)
(Distributivity over scalar sums)
(a+b)(v+W)=(a+bv+W
= (av +bv) + W
= (av+ W)+ (bv + W)

]

Proposition 17.8. Let V' be a vector space with subspace W. If vi, v, ... v, are vectors in
V' such that the cosets vy + W vy + W, ...v3+ W form a basis for the quotient space V /W,
then vy ... vy together with any basis for W forms a basis for V.

Proof. Asserted on page 190 of Erdmann and Wildon. n

17.2 Linear Maps

Lemma 17.9. Let V, W be vector spaces over a field F' and let ¢ : V' — W be an onto linear
map. Let B be a basis for V.. Then ¢(5) is a spanning set for W.

Proof. Let = {v1,...v,}. We need to show that any w € W can be written as a linear
combination of {¢(v1),...¢(v,)}. Let w € W. Since ¢ is onto, there exists v € V' such that
¢(v) = w. We can write v as a unique linear combination of the basis vectors, v = > a'v;

where a’ € F. Then
w=o(w) =6 (Y an) =a' Y o(v)
Thus ¢(f) is a spanning set for W, O

Lemma 17.10. Let V., W be vector spaces over a field F' and let ¢ : V — W be a one-to-one
linear map. Let 5 be a basis for V.. Then ¢(f) is linearly independent.

Proof. Let § = {vy...v,}. Suppose that

Z a'¢(v;) =0

for a® € F. Then by linearity of ¢,

10} <Z aivi> =0

Since ¢ is one-to-one, the kernel is only zero, so > a'v; = 0. Since 3 is a basis, this implies
that o' = 0 for all 7. Thus ¢(3) is linearly independent. O
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Corollary 17.11. Let V. W be vectors spaces over a field F' and let ¢ : V — W be a linear
bijection. Let (B be a basis for V. Then ¢(B) is a basis for W.

Proof. By the previous lemmas, since ¢ is one-to-one and onto, ¢(3) is a linearly independent
spanning set, so it is a basis. ]

Proposition 17.12. Let ¢ : V. — W be a linear map, where V- and W are vector spaces
over F'. Then ker ¢ is a subspace of V.

Proof. Let vy, vy € ker ¢. Then since ¢ is a linear map, ¢(v;+v2) = ¢(v1)+d(v2) = 0+0 = 0,
so v; + vg € ker¢. Let a € F. Then ¢(avy) = ap(v1) = (a)0 = 0 so avy € ker ¢. Then since
ker ¢ is closed under vector addition and s O]

Proposition 17.13 (Rank-Nullity Theorem). Let V,W be finite-dimensional vector spaces
over F' and let ¢ : V. — W be a linear map. Then

dimV = dimim ¢ + dim ker ¢ (17.1)

Proof. (Proof by Lawrence Valby) Let ¢ : V' — W be a linear map and let n = dim V.
By Proposition 17.12, ker ¢ is a subspace of V. Since ker ¢ is a vector space, it has a basis
B = {b1,bs,...b;} where k = dimker ¢, and where k& < n. If £ = n, then ker¢ = V and
dimim ¢ = 0 so the result is true, so assume that k # n. Since B is a linearly independent
subset of V', we can extend it to a basis for V, finding C' = {¢1,¢2... ¢} where BUC' is
a basis for V. We claim that ¢(C) = {¢(c1), ¢(c2), ... ¢(ca—k)} is a basis for im¢. If it is,
then dimim ¢ = n — k and then dimim ¢ + dimker¢ = (n — k) + k =n = dim V.

First we show that ¢(C') spans im¢. Let w € im¢ C W. Then there exists v € V' such
that ¢(v) = w. Since BUV spans V, there exist scalars r,rq,...7 € F and 51,82 ... 8, €
F such that v = Zle rib; + Z?_lk s;¢;. Then by the linear property of ¢,

k n—k k n—k n—k
o(v) =¢ (Z ribi + Z Si@) = Z rip(bi) + Z sip(c;) = Z sid(ci)
i=1 i=1 i=1 i=1 i=1

since b; € ker ¢ for all i. Thus, ¢(v) = w can be written as a linear combination of elements
in ¢(C), so ¢(C) spans im ¢.

Now we show that ¢(C') is linearly independent. Let s1,s5...5,_, € F be scalars such
that Z;:lk sip(c;) = 0. Then if we show that s; = s, = ... = s, = 0 we have show that
¢(C) is linearly independent. By the linear property of ¢, (321 sic;) = 050 320 F sic; €
ker ¢. Since B spans ker ¢, there exist scalars ri,ry...7, € F' such that

We can rearrange this to give



Since B U C' is a basis, it is linearly independent, so all the scalars r;, s; are equal to zero.
Thus ¢(C) is linearly independent.

We have show that ¢(C') spans im ¢ and is linearly independent, so it is a basis for im ¢.
Thus dimim ¢ = n — k, so dimim ¢ + dimker¢p = (n — k) + k =n =dim V. O

Proposition 17.14. Let V' be a vector space over a field F and let U, W be subspaces of V.
Then U + W is a subspace of V.

Proof. Using Propositions 17.2, we must show that U + W is closed under vector addition
and scalar multiplication, then it will be shown that it is a subspace.

Let vi,v9 € U + W. Then by definition of U + W there exist uq, ug, wy, ws such that
U1 = u; +wy and vy = ug +ws. Then vy +vy = (ug +wy) + (U2 +w2) = (ug +uz) + (w1 +wy).
Since U, W are subspaces, u; +us € U and wy + wy € W, thus v; + v, € U + W.

Let vy € U+ W and t € F. Then vy = u; + wy for some u; € U,w; € W. Then
tvy = tug + twy. Since U, W are subspaces, tu; € U and tw; € W, thus tv; € U + W. O

17.3 Matrices and Diagonalisation

Definition 17.15. Let V' be an n-dimensional vector space over F with = {v1,vq,...v,}
a basis for V. Forv € V, we can write v uniquely as a linear combination of basis elements,
v=>1" av; wherea' € F. We define a map [ |g:V — F™ by [v]g = (a*,d?,...a").

Definition 17.16. Let V' be an n-dimensional vector space over F with basis 5. Letx : V —
V' be a linear map. Then the matriz of x is [x]g, the unique matriz in gl(n, F') satisfying
[#][v]s = [2(v)]s

for allv e V. We usually suppress the subset 3 since the choice of basis is clear from context,
writing

Lemma 17.17. Let V' be an n-dimensional vector space over F with basis f = {vy,va,...vn}.
Let x : V =V be a linear map, and [x] = (a;j) be the matriz of x with respect to 8. Then

n

ZL‘(Uj) = Z aijUi

i=1
forv; € B.
Proof. Let v; € B. Then [v;] = (), = (0,0,...1,...0,0) where the 1 is in the jth
position. By the definition of [z],

[2(v))] = [][v;] = (ai;)(0;5) = (a1j, azj, .- - anj)
So we have [z(v;)] = (a1, ag;, - .. ayj). Thus by the definition of the map [ |z,

n

z(v;) = Z a;jv;

=1
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Lemma 17.18. Let V' be an n-dimensional vector space over F with basis B = {vy,...v,}.
Let v,w €V and let N € F. Then

[v]g + [w]g = [v+ w]s
Alv]g = [Avg

Proof. Let v =73, a'v; and let w =Y, b'v;. Then by definition,
8= ( 1 Ce a”)

[w]g = (0',...b")

Then

[Wlg + [wlg = (a',...a") + (b',...0") = (a' +b',...a" + V")
v+w—Zavz+Zb’vz—Zai+bz)m
[v—l—w][g:(a +b1,...a +b") l
Thus [v] + [w]s = [v + w]s. Also,
Aols = Ma,...a") = (A, ... \a™) = [M]s
O

Lemma 17.19. Let V' be an n-dimensional vector space over F with basis B and let x,y :
V — V be linear maps and let A € F'. Then

Proof. Let v € V. Then

[z +yls = [(& +y)(0)]s = [2(v) + y(v)]s = [2(v)]s + [y(v)]5
= [#]s[v]s + [W]slv]s = ([2]s + [y]s)[v]s

Thus [z + y]g = [z]s + [y]s- To show the scalar mutliplication property, observe that

[Az][v] = [(Ax)(v)] = Alz(v)] = Ala][v]
O

Proposition 17.20 (Exercise 16.1i). Let V' be a n-dimensional vector space with basis
and let x,y : V. — V be linear maps. Then

[y ozl = [ylslz]s
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Proof. We omit the subscript fs for clarity. By definition of [x] and [y] we have

By definition of [y o z],

[y o z][v] = [y o z(v)]
Thus [y o z] = [y][z]. O

Lemma 17.21. Let A, B be similar matrices. Then the set of eigenvalues for A is equal to
the set of eigenvalues for B.

Proof. Since A, B are similar, there exists an invertible matrix P such that A = PBP~!.
Let A be an eigenvalue of A. Then Av = \v for some vector v. Then PBP v = v, so
B(P~'v) = P1A\v = A\(P~'v). Thus ) is an eigenvalue of B, with corresponding eigenvector
P, [

Proposition 17.22 (Exericse 16.2). Let x € gl(V'), and let f(t) be a polynomial with f(x) =
0. Then my(t) (the minimal polynomial of x) divides f(t).

Proof. The Euclidean division algorithm for polynomials says that there exist polynomials
q(t),r(t) with degr(t) < degm,(t) such that

f(t) = q(t)yma(t) +r(t)

We can rearrange this to get r(t) = f(t) — q(t)m.(t). From this, we also get r(z) = f(x) —
q(z)m,(z). By the definition of m,, m,(x) = 0, and by hypothesis f(x) = 0, so r(x) = 0.
Since m,(t) is the lowest degree polynomial that kills z, and r(z) = 0 and degr(t) <
deg m,(t), it must be that r(t) = 0. Thus f(t) = q(t)m.(t), so m,(t) divides f(t). O

Proposition 17.23 (Lemma 16.7). Let V' be a vector space and let x1,2s,...x : V — V be
diagonalizable linear maps. Then there exists a basis B of V' that simultaneously diagnalizes
each x; if and only if for each i,j, x;ox; = xj0x;.

Proof. From now on when writing a composition of maps, we omit the o and simply write
x;x;. Suppose that there is a basis # that simultaneously diagonalizes each x;. Then

[xizjls = [wilglzs]p = [5]plilp = [257i]8

The matrix representations [z;]g, [r;]s commute because they are diagonal matrices, and
since the matrix representation of x;x; and z;x; are equal, they are equal as linear maps.
This completes the easier direction of the proof.
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Now suppose that x1,xs,... 2, all pairwise commute. We will show that they are all
simultaneously diagonalizable. We proceed by induction on k. The base case is k = 2.
Suppose x1,xs are diagonalizable, commuting linear maps. Since z; is diagonalizable, we
can write V' as a direct sum of eigenspaces for x;.

V:V)\l@V)Q@...@V)\T
If v € V), then x1(v) = N\jv. We also claim that w = z5(v) € V..
r1(w) = z1(22(v)) = za(21(v)) = 22(Njv) = Mo (v) = Njw

so we have x;(w) = \w, so w is an eigenvector of x; with eigenvalue \;, so w = z5(v) € V),
by definition of V),. Thus V), is an z invariant space. By Corollary 16.5(a), x5 restricted
to V), is diagonalizable. Thus there is a basis ; of V), consisting of eigenvectors for x,. If
v € 7y, then v is a linear combination of eigenvectors of x; with eigenvalue \;, so v is an
eigenvector of xy with eigenvalue \;. Hence

Yy=mnUynU...Uy

is a basis of eigenvectors for both x; and x5. Thus 1, x5 are simultaneously diagonalized by
the basis v of V. The completes the base case.

For the inductive step. suppose that if 1, s, . . . £ commute then they are simultaneously
diagonalizable. Suppose z1, x3, ... xr+1 commute. Then there is a basis 4 that simultaneously
diagonalizes x1, ... x. Consider the composition x5 ... x,. It has matrix representation

k

i=1

But each [z;]4 is diagonal, so the matrix of the product is also diagonal. Since x4, commutes
with each x;, it commutes with the product, so by the base case, there is a basis {2 that
simultaneously diagonalizes this product and xj, . O]

17.4 Interlude: The Diagonal Fallacy

Proposition 17.24 (Exercise 16.3). Let V' be a 2-dimensional vector space with basis [ =
{vi,v2}. Let x -V — V be a linear map with matriz

[z]s = (8 (1))

If U is a subspace of V' such that x(U) C U, then U = {0},U =V, or U = span{v, }.

Proof. One can check that ({0} = {0} and z(V) = span{v;} C V and z(span{v,}) =
{0} C span{v;}. This deals with all zero- and two-dimensional subspaces of V. We must
show that no other 1-dimensional subspace of V is z-invariant. Let w = a'v; + a?v,. Then
any 1-dimensional subspace of V' will be of the form span{w}. Then

otwls = sluda = (g o) (&) = ()
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Thus z(span{w}) = span{v;}. So if span{w} is z-invariant, it must be that w € span{v; },
so it must be that span{w} = span{v;}. Thus the only 1-dimensional subspace of V' that is
a-invariant is span{v; }. O

Proposition 17.25 (Exercise 16.61). Let V' be a vector space over a field F'. Let Hom(V, V) =
{z : V = V} be the set of linear maps from V to itself, and for x,y € Hom(V,V) and A € F
define

(z +y)v = z(v) +y(v)
(Az)v = Az (v))

Then Hom(V, V) is a vector space over F under these operations. It has dimension (dim V).

Proof. Closure of addition - x + y is clearly linear. Inverse - (z + (—z))v = z(v) — z(v) = 0.
Associativity - from associativity in V. Commutativity - from commutativity in V. Identity
- zero map, 0(v) = 0. To see that the dimension of Hom(V, V) is (dim V)?, note that there
is a simple bijection between Hom(V, V') and the set of dim V' x dim V' matrices with entries
in F'. O

Proposition 17.26 (Exercise 16.10). Let V' be a finite-dimensional vector space over F' and
let Hom(V, V') be the vector space of linear transformations from V' to itself. Define

g :Hom(V,V) x Hom(V,V) — F
by B(z,y) = tr(xy). Then B is a symmetric, non-degenerate, bilinear form.

Proof. ( is symmetric because tr(xy) = tr(yx). [ is linear because the trace function is
linear:

plax +y, 2) = tr((ax + y)2)) = atr(zz) + tr(yz) = af(z,y) + By, )
To show that 3 is non-degenerate, we need to show that Hom(V,V)+ = {0}.
Hom(V,V)* = {z € Hom(V, V) : tr(zy) = 0¥y € Hom(V,V)} = {0}

(According to the Wikipedia page on trace, “This follows from the fact that tr(A*A) = 0 if
and only if A =10.") Thus f is non-degenerate. O
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18 Connection to Lie Groups

Definition 18.1. Let f : R" — R be differentiable and let v € R™ with v = (v',v?,...v").
Then df : R™ — TR"™ is defined by
of i
8:61
Definition 18.2. Let U C R™ and let F : U — R™ be differentiable. Let o : I — U be a
smooth curve with o(0) = x and o/(0) = v. Then dF, : U — TpyR" is defined by
dFy(v) = (Foa)'(0)
Proposition 18.3 (Exercise 1.3.1a). Let U C R™ and let F : U — R" be a differentiable

map. Let x € U and v € T,R™ be a tangent vector. Let I C R be an interval, and let
a,B: 1 — U be smooth curves with

a(0)=BO) == a(0)=B(0) = v
Then (F o) (0) = (F o 3)'(0).

Proof. We know that F(z) = (f'(x), f3(x),... f"(z)) for differentiable functions f* : U — R.
Since floa, fio B : I — R are differentiable function from R to R, we can use the one-
dimensional chain rule to get

df (v) =

t) =o' (t)((f") o a)(t)
t) =B O(f") o B)()

(ffoa)
(f’ B)’

(Foa)t)=((floa)®),...(f" o))
(Foa)(t)=((f'oa)(t),...(f"oa)(t))
(Foa)(0)=((f'oa)(0),...(f"oa)(0)
= (2 (0)((f") 0 @)(0),... (@(0)((f") © @)(0))
= ((BO)((f1) 2 B)(0), ... (B0)((f) © 8)(0))
= ((f' e B)(0),...(f" = B)(0))
= (F o B)(0)

Lemma 18.4 (for Exercise 1.3.1b). Let f : R" — R be differentiable. Then df (v + w) =
df (v) + df (w).

Proof. Let v = (vt 02, ... v"),w = (w',w?, ... w").
df (v +w) = df ((v' +w', ... 0" +w"))

gi:(v + w')

of ; of o
8:70’ v o 8x’

= df (v) + df (w)
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]

Proposition 18.5 (Exercise 1.3.1b). Let U C R™ and let F': U — R™ be differentiable. Let
reU and v,w € T,R™. Then

dF,(v+w) = dF,(v) + dF,(w)

Proof. Let F(z) = (f'(x), f*(z),... f"(x)) for some differentiable functions f*: U — R. Let
a,f : I — U be smooth curves such that «(0) = §(0) = = and &/(0) = v and §'(0) = w.
Then

dFy(v) = (F o a)'(0)
9 9 o 9
~ (1 ealt. g 0al0). . g ealn)
= (df'(/(0)), df*(e'(0)), - .. df"(/(0)))
And likewise for 3,
dF,(w) = (F o 5)(0) = (df'(5'(0)),df*(8'(0)), ... df"(5'(0)))
Then we add them together and get

dF;(v) + dF:(w) = (F o a)'(0) + (F o §)'(0)
= (df (/' (0)), df*(e/(0)),.... df"(e/(0)))

(df*(5'(0)), df*(B'(0)), . .. df"(5'(0)))
)+df( (0)), df”( '(0)) +df"(5(0)))
5'(0)), - df"( '(0) +50))
v+ ) df”(v+w))

+

)
B

Il
ﬁj\%\—i-

]

Proposition 18.6 (Exercise 1.3.1b). Let U C R™ and let F : U — R™ be differentiable. Let
re U andv e T,R™, ce R. Then

dF,(cv) = ¢ dF,(v)

Proof. Let f, f2,... f™ be the component functions of F', that is, F'(z) = (f'(x), f*(z),... f"(x)).

Let a: I — R™ be a smooth curve such that «(0) = = and o/(0) = v. Defined g : I — R™
by B(t) = a(ct). Then 5(0) = z and §'(0) = cv, so dF,(cv) = (F o 8)'(0). First we do some

preliminary calculations.

(f'oB)(t) = F1(B(t) = f'(alet)) = (f o a)(ct)
(f'oB)(t) = (floa)(ct)=c(f oa)(t)
(FoB)(0) = ((f'2B)(0),...(f" o B)(0))
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Now we can use these to evaluate dF,(cv).
dF;(cv) = (F o B)'(0)
= ((f12p)(0),...(f" 2 8)(0))
= (c(f 0 )(0),...c(f" 0 a)'(0))
=c(Fo a) (0)
[l

Let G be a Lie group. Then for g € G we can define maps L, : G — G by Ly(h) = gh. For
h € G, the differential (dL,); of L, at h is a linear map T,G — T, G.

Proposition 18.7 (Exercise 1.4.3a). Let G be a Lie group with Lie algebra g. Let v € g
and let v be the vector field defined by

0(g) = (dLg)e(v)
Then for g,h € G,
0(gh) = dLy(v(h))

Proof. We know that Ly, = Ly o L. Then since Ly, Ly, : G — G are differentiable, we can
use the Chain Rule,

d(Lgh)e == d(Lg o) Lh)e = (dLg)h e} (dLh)e

Now we can compute

]

Proposition 18.8 (Exercise 1.4.4). Let V = a’ 3 W = b7 - be vector fields on a Lie group
G. Then [V,W] is a vector field on G, and in par’tzcular

ol T da’\ 0
ox’ ox' ) 0xi
Proof. Let f: G — R be a smooth function. Then

V.WI(f) = VW) = W(V(f))
v (a)-w (vs)

; 0 ; 0 ; 0 0
_&8131( 8:6’) _bj% (b]@)

v = («




Now we use the product rule.

:ai<abﬂ' of | 0 >_bj<8ai8f . O%f )

0z 01 " 90w 021 0z Dwiom
By Clairaut’s Theorem,

0*f B o*f
Oxidxi  Qxidx

so we get nice cancellation of the second term of each sum. Thus

O Of 00 Of
“ 0w 007 " 0 0
O Of 00l Of

o7~ 9 o

[V7 W](f) =

= a9
L b dal\ 0
—\% or ox' ) Ozd
Thus we have written [V, W](f) as a linear combination of 2 f, and we know that {52} is
a basis for the tangent space, so

,O0b1 . 0al\ 0
V. W= (a ox? -0 8:1:1) O/

]

Proposition 18.9. Let G be a Lie group with Lie algebra g and identity e. Let V be a
left-invariant vector field on G, that is, V : G — TG with V(gh) = (dLy)n(V (h)). (Note
that (dLg)p, : ThG — TynG.) Let v =V(e). Then V = 0, where v : G — TG is defined by

0(g) = (dLg)c(v).
Proof. To show: For g € G, V(g) = 9(g).
0(g) = (dLg)e(v) = (dLg)e(V(€))
Vig) = V(ge) = (dLg).(V(e))
0

What the previous proposition shows is that every left-invariant vector field on G is equal
to v for some v € g.

In the next proposition, M (n,R) refers to the set of all n x n matrices with real entries and
GL(n,R) refers to the set of invertible n x n matrices.

Proposition 18.10 (Exercise 1.4.8a). Let G be a subgroup of GL(n,R) and denote the
identity (matriz) by I. Let L, : G — G be the map Ly(h) = gh. Then (dL,); : T'G — T,G
is given by (dL,)r(A) = gA.
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Proof. Let h : (—e,¢) — G be a smooth curve with h(0) = [ and A'(0) = A € M(n,R).
Then

(ALg)1(A) = (g B)Dlico = (6 (1)) |0 = g1 (D)o = gh'(0) = 94
O

Corollary 18.11 (to Exercise 1.4.8a). Define the vector field A on G by A(g) = gA. Then
A is left-invariant.

Proof.

Algh) = ghA = g(hA) = g(A(h)) = (dLy)n(A(h))

19 Connection of SL(n,C) to sl(n,C)

Definition 19.1. Let A € gl(n,C). The matriz exponential is defined by

=\ A" A% A3
exp(A):;g:I—i—A—l—g—l-g—l—...

Lemma 19.2. For a matriz A € gl(n,C),det(exp(A)) = 4.
Proposition 19.3. sl(n,C) is the tangent space at the identity of SL(n,C).
Proof. Note that

Sl(n, C) = det ~'(1) C GL(n,C)

We know that dim SL(n,C) = n? — 1, so the tangent space at the identity must also have
dimn? — 1. Let A € sl(n,C), so trA = 0. Let a : (—¢,¢) — gl(n,C) be a curve with
a(t) = exp(tA). Then

a(0) =1
d'(t) = Aexp(tA) = d'(0)=A
det(a(t)) = det(exp(tA)) = "4 =¢e" =1

Thus « is a curve in SL(n, C) with A = &/(0) in the tangent space, thus sl(n, C) is contained
in the tangent space. Since dimsl(n,C) = n? — 1, it must be the whole tangent space. [
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